NPS ARCHIVE 1998.09 WILLIAMS, E.

DUDLEY KNOX LIBRARY NAV POSTGRADUATE SCHOOL MON POStGRADUATE SCHOOL

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

.

.

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

ANALYSIS OF AMPHIBIOUS SHIP LIFT CAPABILITY

by

Eric D. Williams

September 1998

Thesis Advisor:

Samuel E. Buttrey

Second Reader

Ronald L. Brown

Approved for public release; distribution is unlimited.

.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE September 1998	3. REPORT T Master's T	3. REPORT TYPE AND DATES COVERED Master's Thesis		
4. TITLE AND SUBTITLE ANALYSIS OF AMPHIBIOUS SHIP	5. FUNDING NUMBERS				
6. AUTHOR(S) Williams, Eric D.					
7. PERFORMING ORGANIZATION NAME(S) AND Naval Postgraduate School Monterey, CA 93943-5000	8. PERFORMING ORGANIZATION REPORT NUMBER				
9. SPONSORING / MONITORING AGENCY NAME	10. SPONSORING / MONITORING AGENCY REPORT NUMBER				
11. SUPPLEMENTARY NOTES	······································				
The views expressed in this thesis are the Department of Defense or the U.S.	hose of the author and do not a Government.	reflect the of	ficial policy or position of		
12a. DISTRIBUTION / AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE		
Approved for public release; distribution					
13. ABSTRACT (maximum 200 word	s)				
Amphibious ship lift is crucial in for a wide range of conflicts. This thes First, gross lift capabilities of all amphi space on board a ship is required for ac thesis is to use historical load-out data	supporting operations of Mari is examines three different asp bious ships in the Navy today cess, tie-downs, and other con from six-month deployments t	ine Air Grou pects of ampl are determin siderations, to derive exp	nd Task Forces (MAGTF) hibious ship lift capability. ned. Since some storage the second step of this ected net lift capability		

a six-month MAGTF deployment. The final part of this thesis utilizes a linear program to determine specific ship combinations that optimize ARG lift capability for both the Pacific and Atlantic Fleets.

from gross lift capability. A three-ship Amphibious Ready Group (ARG) is traditionally required to support

14. SUBJECT TERMS

Amphibious Ship, Broken S	15. NUMBER OF PAGES 100		
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFI- CATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-9) Prescribed by ANSI Std. 239-18

.

Approved for public release; distribution is unlimited

ANALYSIS OF AMPHIBIOUS SHIP LIFT CAPABILITY

Eric D.,//Williams Lieutenant, United States Navy B.A., University of Illinois, 1992

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL September 1998 MPS Archive 1998.09 Willows, E.

1 5/14/13

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 23943-510

ABSTRACT

Amphibious ship lift is crucial in supporting operations of Marine Air Ground Task Forces (MAGTF) for a wide range of conflicts. This thesis examines three different aspects of amphibious ship lift capability. First, gross lift capabilities of all amphibious ships in the Navy today are determined. Since some storage space on board a ship is required for access, tie-downs, and other considerations, the second step of this thesis is to use historical load-out data from six-month deployments to derive expected net lift capability from gross lift capability. A three-ship Amphibious Ready Group (ARG) is traditionally required to support a six-month MAGTF deployment. The final part of this thesis utilizes a linear program to determine specific ship combinations that optimize ARG lift capability for both the Pacific and Atlantic Fleets.

TABLE OF CONTENTS

I. INTRODUCTION	1
II. BACKGROUND	3
A. DEPARTMENT OF THE NAVY LIFT STUDY	3
B. SHIP'S LOADING CHARACTERISTIC PAMPHLETS	3
C. BROKEN STOWAGE FACTORS	4
D. HISTORICAL DATA	5
E. AMPHIBIOUS READY GROUP (ARG) COMBINATIONS	6
III. SHIP GROSS LIFT CAPACITIES	9
A. GROSS CAPACITIES OF SHIPS AND CLASS AVERAGES TABLE	9
B. DEVELOPMENT OF THE GROSS CAPACITIES OF SHIPS AND CLASS	10
AVERAGES TABLE	10
IV. BROKEN STOWAGE FACTOR CALCULATIONS	13
A. EMBARKED PERSONNEL MATERIAL REPORTS	13
B. VEHICLE STOWAGE ASSUMPTIONS	15
C. CARGO STOWAGE	15
D. 6.9 PERCENT DIFFERENCE IN BROKEN STOWAGE FACTORS	16
E. REDUCED RANGES	19
F. FINAL ASSUMPTIONS AND CALCULATIONS	20
V. ANALYSIS OF BROKEN STOWAGE FACTORS AND LOAD-OUTS	23
A. LANDING CRAFT	23
1. Notional Landing Craft Load-Out	23
2. Standard Preboat Load-Outs	24
a. Standard Landing Craft Air Cushion (LCAC) Preboat Load-Out	24
b. Standard Landing Craft Utility (LCU) Preboat Load-Out	25
B. VEHICLE BROKEN STOWAGE FACTORS	27
1. Comparison Between Ship Classes	27
2. Comparision Between Fleets	30
C. CARGO BROKEN STOWAGE FACTORS	32
1. Comparison Between Ship Classes	32

2. Comparison Between Fleets	
D. AMPHIBIOUS READY GROUP (ARG) LOAD-OUTS	
VI. DETERMINING AMPHIBIOUS READY GROUPS (ARGs)	
A. SCHEDULING DISCLAIMER	
B. WORST-CASE LIFT CAPACITY	
C. LINEAR PROGRAM MODEL	40
D. PROPOSED AMPHIBIOUS READY GROUPS	
1. Pacific Fleet Results	42
2. Atlantic Fleet Results	46
a. Two Ship Combinations	
b. Fifteen Ship Amphibious Ready Group Schedule	
VII. RESULTS AND CONCLUSIONS	51
A. BROKEN STOWAGE FACTORS	51
B. LANDING CRAFT	51
C. NET LIFT CAPACITIES OF SHIPS AND CLASS AVERAGES TABLE	
D. DETERMINING AMPHIBIOUS READY GROUPS (ARGs)	53
E. OBSERVATIONS AND RECOMMENDATIONS	53
APPENDIX A. GLOSSARY OF TERMS AND ACRONYMS	55
APPENDIX B. GROSS CAPACITIES OF SHIPS AND	
CLASS AVERAGES TABLE	59
APPENDIX C. DETAILED GROSS CAPACITIES TABLES	61
APPENDIX D. BROKEN STOWAGE FACTOR CALCULATIONS	65
APPENDIX E. NET SHIP CLASS LIFT CAPACITIES TABLE	73
APPENDIX F. SAMPLE OF APPLICABLE SLCP PAGES	75
APPENDIX G. SAMPLE GAMS CODE AND RESULTS	79
LIST OF REFERENCES	85
INITIAL DISTRIBUTION LIST	87

EXECUTIVE SUMMARY

Amphibious ship lift is crucial in supporting operations of Marine Air Ground Task Forces (MAGTF) for a wide range of conflicts. This thesis examines three different aspects of amphibious ship lift capability. First, gross lift capabilities of all amphibious ships in the Navy today are determined. Since some storage space on board a ship is required for access, tie-downs, and other considerations, the second step of this thesis is to use historical load-out data from six-month deployments to derive expected net lift capability from gross lift capability. A three-ship Amphibious Ready Group (ARG) is traditionally required to support a six-month MAGTF deployment. The final part of this thesis utilizes a linear program to determine specific ship combinations that optimize ARG lift capability for both the Pacific and Atlantic Fleets.

The gross capacities of all 42 amphibious ships are determined by collecting and comparing detailed information from different resources. These results are compiled in Appendix C, which is a valuable tool allowing ships within a class to compare their measured capacities. Load-out data is collected from different six-month deployments. This load-out data is used to calculate broken stowage factors for both vehicle and cargo stowage areas. Broken stowage factor is the percentage of gross capacity that is actually used for vehicle or cargo storage. Analysis of variance is used to compare broken stowage factors between classes of ships and two sample t-tests are used to compare broken stowage factors between fleets. Results show that statistically, there is no significant difference between ship classes or fleets, therefore they can all be described in one group. The resulting vehicle broken stowage factor is 0.70 and the resulting cargo broken stowage factor is 0.64. Load-out data is also used to determine average landing

ix

craft load-out. The average landing craft load-out for Landing Craft Air Cushions (LCACs) and Landing Craft Utilities (LCUs) are 985 and 1490 square feet respectively. The above information is then utilized to calculate net lift capacity for all 42 ships.

A linear programming model is utilized to determine the best combination of three ships for each ARG, mixing and matching LPDs and LSDs to the big decks in the schedule. The best combinations will be that ARG schedule with the greatest minimum ARG lift capacity in terms of base troop capacity, vehicle square footage, and cargo cubic footage. In other words the total ARG schedule is only as good as the lift capability of the ARG with the smallest capacity. Results show that their linear program provides negligible improvement for the Pacific Fleet. On the other hand, the Atlantic Fleet can be significantly improved by simply removing the Pensacola and the Portland from the ARG schedule.

I. INTRODUCTION

Amphibious ship lift is crucial in supporting operations of Marine Air Ground Task Forces (MAGTF) for a wide range of conflicts. This thesis examines three different aspects of amphibious ship lift capability. First, gross lift capabilities of all amphibious ships in the Navy today are determined. Since some storage space on board a ship is required for access, tie-downs, and other considerations, the second step of this thesis is to use historical load-out data from six-month deployments to derive expected net lift capability from gross lift capability. A three-ship Amphibious Ready Group (ARG) is traditionally required to support a six-month MAGTF deployment. The final part of this thesis utilizes a linear program to determine specific ship combinations that optimize ARG lift capability for both the Pacific and Atlantic Fleets.

II. BACKGROUND

A. DEPARTMENT OF THE NAVY LIFT STUDY

Approximately every ten years the Department of the Navy reviews amphibious lift requirements. The most recent study, <u>Integrated Amphibious Operations and USMC</u> <u>Air Support Requirements</u> (1990 DoN Lift) was completed in 1990. One of the many questions the DoN Lift Study asks is whether there is sufficient amphibious lift capability for two major regional conflicts. In an attempt to answer this question, the study compiled a table of "Gross Capacities of Ships and Class Averages" (Annex J of 1990 DoN Lift). Upon close review of this table, several problems are evident. First, the table appears to be generic in that vehicle storage capacity is reported as being constant within a class of ship. Furthermore data in the table is inaccurate since there have been many ship alterations since 1990. A current table is maintained by Combat Cargo Officers (CCOs) assigned to the staffs of the Commander, Naval Surface Forces U.S. Pacific Fleet (CNSP) and the Commander, Naval Surface Forces U.S. Atlantic Fleet (CNSL).

B. SHIP'S LOADING CHARACTERISTIC PAMPHLETS

While Annex J of the DoN Lift Study does not consider ship alterations or other deviations between ships in a class, such information is available from a Ship's Loading Characteristic Pamphlet (SLCP) that is maintained by each ship. The SLCP provides updated capacities for each compartment on the ship. It would be natural to assume that each ship can maintain its SLCP accurately. During research for this thesis, it became apparent that CCOs at the Commander Amphibious Group level (CPG-1, CPG-2, and CPG-3) and below strongly believe that the SLCP is consistently the most reliable source of capacity data. In contrast, interviewed CCOs and other personnel (at CNSL and

OPNAV N-85) above the Commander Amphibious Group level do not share this belief in SLCP accuracy. Therefore, this thesis will compile SLCPs and compare results with CNSL and CNSP ship capacity tables to generate an updated Gross Capacity of Ships and Class Averages table.

C. BROKEN STOWAGE FACTORS

"A broken stowage factor is applied to the available space for embarkation due to the loss between boxes, between vehicles, around stanchions, and over cargo. The factor will vary, depending on the type and size of vehicles, type and size of general cargo, training and experience of loading personnel, type of loading, method of stowage, and configuration of compartments." (Joint Pub 3-02.2) Usable space is also lost due to allowance for fire lanes, routine access, tie-downs used to secure cargo, and unit integrity in a combat load. The broken stowage factor is usually defined as the fraction of space used for storage, while broken stowage loss is the fraction of unusable space.

Broken stowage factors can be used to estimate net lift capability from gross lift capability. They are generally used for long-term planning of a mission prior to the generation of a load plan. In other words, broken stowage factors can be used to estimate how much cargo a platform can carry for an upcoming or a hypothetical deployment. In general, broken stowage factors are only for estimates of a ship's net lift capability. Once a ship's required cargo load has been determined, a detailed load plan designates the exact position of each piece of cargo.

The method for calculating broken stowage factors (BSF) is simple. The first equation is for calculating the broken stowage factor for a single cargo stowage area or for all cargo stowage areas in an entire ship.

$$Cargo BSF = \frac{Cargo Loaded (cubic footage)}{Total or Gross Capacity (cubic footage)}$$

The second equation is the method for calculating the vehicle broken stowage factor for a <u>single vehicle stowage area</u>. This equation should be used when vehicles stowed in the well deck are not being considered.

 $Vehicle BSF = \frac{Vehicles and Cargo Loaded (square footage)}{Total or Gross Capacity (square footage)}$

"Each landing craft carried in amphibious ships has vehicle carrying capacity." (1990 DoN Lift) "Preboat load" refers to the vehicles loaded on those landing craft, measured in square feet. A third equation is the method for calculating the vehicle broken stowage factor for <u>all vehicle stowage areas on an entire ship and accounts for the</u> <u>preboat load</u> in the well deck. This method was used in Annex J of the 1990 DoN Lift Study and is used in the remainder of this thesis.

$$Vehicle BSF = \frac{Vehicles and Cargo Loaded (square footage) - Preboat Load (square footage)}{Total or Gross Capacity (square footage)}$$

According to Annex J of the DoN Lift study, a 0.70 broken stowage factor should be used for vehicle stowage areas, which are measured in square feet. For cargo stowage areas, which are measured in cubic feet, a broken stowage factor of 0.75 was specified. The main emphasis of this thesis is to derive accurate values of broken stowage factors from historical data from both fleets.

D. HISTORICAL DATA

Amphibious ship load-outs are generally largest during six-month deployments. Therefore, historical data used in this thesis was taken predominantly from six-month

deployments that occurred during the past three years. Data is provided by each ship in the form of detailed load plans and Embarked Personnel Material Reports (EPMRs) which are examined to determine actual broken stowage factors.

E. AMPHIBIOUS READY GROUP (ARG) COMBINATIONS

Six-month deployments in both the Atlantic and the Pacific Fleets occur in the form of an Amphibious Ready Group (ARG). This ARG typically consists of three different ships. The largest ship, called the "big deck," is an LPH, LHA, or LHD. These ships resemble an aircraft carrier and carry the Aviation Combat Element (ACE). The second ship is an LPD, an amphibious transport dock, which serves as the primary control ship and also transports and lands Marines by landing craft or by helicopters. The third ship is an LSD, a dock landing ship also used to transport and land Marines. There are four different variations of LSDs. The Atlantic Fleet has eighteen amphibious ships available for six-month deployments: five big decks, five LPDs and eight LSDs. In the Pacific Fleet, CPG-3 has twelve amphibious ships available for six-month deployments: four big decks, four LPDs and four LSDs. At least one ARG from each fleet is always on station, which requires the oncoming ARG to depart prior to the return of the off-going ARG. Therefore, with six-month underway periods, one rotation through all the amphibious ships lasts almost two and one half years for the Atlantic Fleet and almost two years for the Pacific Fleet. A rotation is measured from the beginning of the first deployment until the completion of the last deployment, so that all ARGs are deployed once, and no ship is deployed more than once.

The ARG schedule is determined by factors other than ARG lift capability. The schedule for a single amphibious ship will include a significant maintenance period, a

work-up period of approximately 9 months, and finally, the six-month deployment. Therefore, a change to the rotation of ships in the ARG schedule is both difficult and impractical. The purpose of the final portion of this thesis is to provide an alternative method for planning deployment schedules. A linear programming model is utilized to determine the best combination of three ships for each ARG, mixing and matching LPDs and LSDs to the big decks in the schedule. The best combinations will be that ARG schedule with the greatest minimum ARG lift capacity in terms of base troop capacity, vehicle square footage, and cargo cubic footage. In other words the total ARG schedule is only as good as the lift capability of the ARG with the smallest capacity.

This thesis proceeds as follows: Chapter III provides the gross capacities of ships and class averages and explains how these capacities were developed. Chapter IV explains the resources used for six-month load-outs. It explains the assumptions used and the calculations necessary to determine broken stowage factors. Chapter V analyzes the results of broken stowage factor calculations. It examines differences between fleets and classes of ships. It also reviews the Notional Landing Craft Load-out and Standard preboat load-out. Chapter VI describes the linear program model to determine the combinations of three ships that achieve the greatest minimum lift capability throughout the ARG schedule for both the Pacific and the Atlantic Fleets. Chapter VII summarizes the results and conclusions.

. .

III. SHIP GROSS LIFT CAPACITIES

A. GROSS CAPACITIES OF SHIPS AND CLASS AVERAGES TABLE

The first step in calculating broken stowage factors is to determine accurate measures of total gross space available for each ship. Two such measures are routinely used: square footage and cubic footage available. Additional parameters are also collected to create a table similar to Annex J of the 1990 DoN Lift Study. The Gross Capacities of Ships and Class Averages Table (Appendix B) includes the following information:

1. Troop Bunks: Gross troop capacity in terms of base, surge and their combined total. Base is the total number of permanent troop bunks available.

2. Gross Vehicle Square Footage: "The entire deck area available for routine vehicle stowage excluding unacceptable areas and fire lanes." (1990 DoN Lift) Square footage available within embarked landing craft is not included in this area.

3. Gross Cargo Cubic Footage: The available deck area multiplied by the allowable stowage height of the compartment. Allowable stowage height is the total height minus obstructions and the space required for proper sprinkler dispersion pattern as defined in the 1990 DoN Lift Study.

4. Bulk POL (petroleum, oils, and lubricants): The total bulk Diesel Fuel Marine (DFM), aviation fuel (JP-5), and motor gasoline (MOGAS) includes only internal tankage for both landing force and ship propulsion.

5. SLCP Approval Date: The signature date or date of validation for each SLCP.

B. DEVELOPMENT OF THE GROSS CAPACITIES OF SHIPS AND CLASS AVERAGES TABLE

Using the resources shown below, vehicle square footage and cargo cubic footage have been developed for each ship.

1. SLCPs obtained for 36 of 42 amphibious ships

2. Embarkation Lift Data from CNSL

3. Capacity of Pacific Fleet Amphibious Ships from CNSP

4. 1990 DoN Lift Study, Annex J

Capacity information provided by these resources is generally inconsistent.

Appendix C summarizes the data provided (LST, LCC, and LPH class ships are not listed) including correct SLCP totals for each ship. Vehicle square footage is presented by compartment and cargo cubic footage is presented by cargo type to provide consistency for each class of ship.

Capacity estimates are refined by a thorough analysis to resolve the previously mentioned inconsistencies. In all cases, capacity data in the 1990 DoN Lift Study, Annex J, is outdated or incorrect. Consequently, capacity information from this resource is eliminated from further consideration. Sections I and VIII of each SLCP contain vehicle square footage and cargo cubic footage data. Section I provides Troop Cargo Capacities and Section VIII gives the Troop Cargo Space Capability Breakdown. While theoretically identical, totals from these two sections do not always agree with each other. Total capacities reported in some SLCPs include compartments or types of cargo that are omitted in other SLCPs of the same class of ship. Other inconsistencies are noted when comparing data reported in the SLCPs with data provided by CNSL or CNSP.

Using vehicle square footage and cargo cubic footage as the two measures of capacity for the 42 amphibious ships gives the 84 measures of capacity used in this study. On ten ships, both square footage and cubic footage from SLCP totals agree with capacities reported by CNS(P/L). On nine other ships, cubic footage from SLCP totals agree with capacities reported by CNS(P/L) while square footage reports disagree. On another four ships, square footage from SLCP totals agree with capacities reported by CNS(P/L) while square footage reports disagree. On another four ships, square footage reports disagree. In three other instances, reported capacities differ by fewer than 20 units, which is taken to be negligible. For six ships, no SLCP is available and the CNS(P/L) data is assumed to be correct. Thus, of the 84 measures of capacity, 48 are considered to be known accurately.

The 36 remaining capacities require additional analysis to resolve disparities between SLCP totals and CNS(P/L) data. Several factors are considered in determining the correct capacity in these cases. For three entries, totals in the SLCP agree with capacities reported by CNS(P/L) even though individual entries in the SLCP do not add up to the reported total. Correlation between ships in a class is expected and can be exploited. Available Equipment Personnel Manning Reports (EPMRs) and resulting broken stowage factor calculations also help to determine the correct capacity (explained in Chapter IV). In many cases the smaller of the two capacities reported for a ship is discarded because it leads to an infeasible broken stowage factor. Troop bunks and bulk POL data is based primarily on SLCPs. Data from CNSP or CNSL is only used when the SLCP is not available.

IV. BROKEN STOWAGE FACTOR CALCULATIONS

A. EMBARKED PERSONNEL MATERIAL REPORTS

The correct way to calculate broken stowage factors is to know exactly what is stored in vehicle stowage spaces and what is stored in cargo stowage spaces, and then to divide the space used by the total or gross capacity. Unfortunately the location of vehicles and cargo is not always provided. This chapter explains the assumptions made to derive broken stowage factors using only the information from Embarked Personnel Material Reports (EPMRs) and a limited number of Detailed Load Plans.

Load-outs for six-month deployments are expected to be larger than other underway periods. Going back as far as three years, 31 EPMRs, exclusively from sixmonth deployments, were easily collected. However, since load plans are not consistently kept, only seven load plans were available for the above deployments. Of these seven, three load plans are incomplete because they do not include Landing Forces Operational Reserve Material (LFORM). One additional EPMR used from the Belleau Wood is not for a six-month deployment, but appears to be a full load-out. Using the Belleau Wood provides EPMRs for a total of four LHAs, two from each fleet, and increases the total sample size to 32.

EPMRs provide a good list of vehicle and cargo in terms of square footage and cubic footage, but they do not always list where that cargo is stowed (with the exception of vehicles loaded on landing craft). In seven EPMRs (without Detailed Load Plans) the information provided is detailed enough that an accurate location of vehicle and cargo can reasonably be determined. An EPMR contains six sections that describe the cargo loadout. Section D is the Lift Summary and should list all cargo in either square feet or cubic feet, or both. The primary cargo categories included in the Lift Summary are Aircraft (square footage), Vehicles (square footage), Outsized Cargo (square footage and cubic footage), Organizational Cargo (cubic footage) and LFORM (cubic footage). Aircraft are generally stowed in a hangar bay or on a flight deck and are not included in the broken stowage factor calculations. Section E is the Space Available, that is, the space remaining for more cargo after the load-out is complete. Space Available is listed for General Cargo, Ammunition, and Pyrotechnic areas in cubic feet and for the Flight Deck (when used for vehicle stowage), Well Deck, Vehicle, and Landing Craft stowage areas in square feet. Section G is the Organizational Recap and lists the organizations embarked together with each organization's aircraft, vehicles, outsized cargo, landing craft embarked, and vehicles loaded in the landing craft as well as a cargo summary. Section H is a description of LFORM broken down by class. Finally, Sections I and J describe other contingency assets (Other PWR Assets and the Opportune Lift).

A detailed spreadsheet (not attached) has been developed to ensure that the total space for vehicles, outsized cargo, organizational cargo, and LFORM listed in the Organizational Recap and LFORM sections matches the Lift Summary section. Generally it does match; however in a few instances data from the Organizational Recap or LFORM sections does not match those from the Lift Summary, so the larger totals are assumed to be more complete and correct. For the most part, Organizational Recaps from the Pacific Fleet include only numbers and descriptions of cargo loaded, and do not include square footage or cubic footage. Most outsized cargo is listed in both square footage and cubic footage, but there are some occasions where a small portion of outsized cargo or organizational cargo is listed in only one measurement. On those occasions the

missing measurement is interpolated from outsized cargo for which both measures are provided. In almost all cases, outsized cargo and organizational cargo averaged 7.2 feet in height (that is, the ratio of volume to area averaged 7.2 feet). If, for example, only cubic footage is provided, then square footage is interpolated by dividing the cubic footage by 7.2 feet. The importance of outsized cargo and organizational cargo being represented in both area and volume will become apparent later in this chapter.

B. VEHICLE STOWAGE ASSUMPTIONS

The first assumption is that all vehicles are stowed in vehicle stowage areas. In most cases vehicles are not stowed in cargo stowage areas, so this is a very reasonable assumption. Vehicles are also reported stowed onboard landing craft as part of the preboat load. It should be noted that on six EPMRs, it is specifically reported that a small portion of either outsized cargo or organizational cargo is stored in vehicle stowage areas. That small portion of cargo is included in vehicle square footage totals.

C. CARGO STOWAGE

A natural assumption is that all outsized cargo is stored in vehicle storage areas and all remaining cargo is stored in cargo stowage areas. After reviewing the results in Table D.1 of Appendix D, however, this assumption proves to be untenable. In numerous cases, this would require that vehicle or cargo broken stowage factors exceed 1.0, and in a few cases approach 2.0. Of course a broken stowage factor greater than one is impossible. Conversely, several cargo broken stowage factors are extremely low. Additionally, the difference between vehicle and cargo broken stowage factors, which is expected to be small, can be in these cases as large as 1.548. With vehicle broken stowage factors exceeding 1.0, it is clear that at least a fraction of the outsized cargo is

being stored in cargo storage areas. In other cases, with cargo broken stowage factors exceeding 1.0, it is clear that at least a fraction of non-outsized cargo is being stored in vehicle storage areas. The sizes of those fractions in some cases is unknown.

D. 6.9 PERCENT DIFFERENCE IN BROKEN STOWAGE FACTORS

The results from the eleven ships, four with complete Detailed Load Plans and seven with detailed EPMRs show that an average cargo broken stowage factor of 0.661 and an average vehicle broken stowage factor of 0.73, a difference of 0.069. Therefore, the next tentative assumption is that a vehicle broken stowage factor is always 0.069 larger than the cargo broken stowage factor on the same ship. The results of this assumption are displayed in Table D.2 of Appendix D. This assumption is too restrictive since a difference of 0.069 may not be valid for all ships. It does, however, provide a good starting point to compare a single artificial broken stowage factor between ships and to validate results.

In some cases, like that of the Wasp, a 6.9 percent difference (vehicle broken stowage greater than cargo broken stowage) could be achieved by assuming that a portion of outsized cargo was stored in vehicle storage areas and the remainder in cargo storage areas. (For the purpose of this analysis, cargo is categorized as either "outsized" or "regular." Regular cargo is defined as all cargo that is not outsized.) If a 6.9 percent difference is achievable with only outsized cargo, then all regular cargo is assumed to be stored in cargo storage areas. As a result, a value of zero is used for both Undesignated Cargo columns in Table D.2 of Appendix D. Otherwise, regular cargo will need to be considered to be stored in vehicle storage areas. ("Undesignated Cargo" gives the area of that regular cargo which might be stored in either location.) If for example, a 6.9 percent

difference cannot be achieved with outsized cargo alone, as on the Ogden, a portion of regular cargo, either organizational cargo or LFORM, is assumed to have been stored in the vehicle storage areas. In these cases, the relevant volume of regular cargo has been subtracted from Regular Cargo and then listed in Undesignated Cargo of Table D.2 of Appendix D. Therefore, the sum of Regular Cargo and Undesignated Cargo on the cargo side of Appendix D, Table D.2, represents the total cubic footage of regular cargo. The value (in cubic feet) used for Undesignated Cargo in the cargo side of the table is also used in the Undesignated Cargo column on the vehicle side after conversion to square footage. Similarly, the value (in cubic footage) used for Outsized Cargo is also listed on the vehicle side, after conversion to square footage.

VEHICLE STOWAGE AREAS									
GROSS	VEHICLE	Vehicle	Undesignated	Outsized	Space	Preboat	Vehicle -	Vehicle	_
(Sqft)	LOADED	Reported	Cargo	Cargo	Available	Load-out	Preboat	Brok Stow	
15824	12172	8572	4611	2518	220	1504	10668	0.684	
CARGO STOWAGE AREAS									
					0				

GROSS	CARGO	Regular	Undesignated	Outsized	Space	Cargo	% Cargo
(Cuft)	LOADED	Cargo	Cargo	Cargo	Available	Brok Stow	in Vehicle
48960	29819	6466	32718	14460	420	0.614	0.505

Table 4.1. USS Ponce (LPD-15) 6.9 Percent Difference in Broken Stowage Factors

The Ponce provides a good example of the above process (see Table 4.1 above). A total of 39,184 (6,466 + 32,718) cubic feet of regular cargo was loaded. If all of this regular cargo were to have been loaded in cargo stowage spaces, a 6.9 percent difference could not have been achieved. Therefore, it is assumed that a portion of that regular cargo, in this case 32,718 cubic feet, may have been stowed in vehicle stowage areas. Then 32,718 cubic feet is subtracted from the Regular Cargo column. The Regular Cargo column becomes 6,466 (39,184 – 32,718) cubic feet, which is assumed to have been stowed in the Undesignated Cargo column on the cargo side measures approximately 4,611 square feet in area; that amount is listed in the Undesignated Cargo column on the vehicle side of the table. Similarly, 14,460 cubic feet of outsized cargo is equivalent to 2,518 square feet and it is this value that is listed in the Outsized Cargo column on the vehicle side.

Finally, the %Cargo in Vehicle column of Table 2 is the percentage of Undesignated Cargo and Outsized Cargo that must have been stowed in vehicle stowage areas to achieve a 6.9 percent difference between cargo and vehicle broken stowage factors. For example, on the Ponce, 50.5% of Undesignated Cargo and Outsized Cargo would have to have been stored in vehicle storage areas to achieve a 6.9 percent difference. Therefore the values for Undesignated Cargo and Outsized Cargo columns are multiplied by 0.505 on the vehicle square footage side. These products are added to the Vehicle Reported column to produce the Vehicle Loaded column (total square footage loaded in vehicle storage areas). In the case of the Ponce, 8,572 + 0.505 * (4,611 + 0.505) + (4,611) + 0.505 + 0.50(2,518) = 12,172 is the square feet of Vehicle Loaded. On the cargo side, the Undesignated Cargo and Outsized Cargo columns on the cargo cubic footage side are multiplied by 0.495 (1-0.505). The products are added to the Regular Cargo column to achieve the Cargo Loaded column (total cubic footage loaded in cargo storage areas). In the case of the Ponce, 6,466 + 0.495 * (32,718 + 14,460) = 29,819 is the cubic feet of Cargo Loaded. Therefore all cargo, both regular and outsized, has been included only once.

Four ships (Shreveport (97), Ashland, Carter Hall, and Oak Hill) are highlighted in Appendix D because their actual broken stowage factors are determined from detailed load plans. Seven ships (Wasp, Essex, Kearsarge, Peleliu, Guam(Oct 97), Austin,

Ogden) are highlighted in Appendix D because the information in their EPMRs is detailed enough that an accurate location of vehicle and cargo can reasonably be determined. Even when all regular and outsized cargo on the Harpers Ferry is considered to have been stored in cargo storage areas, a 6.9 percent difference could not be achieved. Both broken stowage factors for the Fort Fisher greatly exceeded 1.0; therefore, it is assumed that the Fort Fisher's EPMR is incorrect and as a result, the Fort Fisher is excluded from the remaining portion of the analysis.

E. REDUCED RANGES

As stated previously, a problem with the 6.9 percent difference assumption is that it is too restrictive. Such an assumption implies that all ships have the same differences between cargo and vehicle broken stowage factors, which is unlikely. Returning to the original problem, it is known how much cargo is loaded on each ship. With the exception of eleven ships, the location of that cargo, however, is not known. In order to reduce the possible range of broken stowage factors and to better estimate the actual broken storage factor values, three new general assumptions are applied. The first of these assumptions is that all broken stowage factors are less than 0.95. The second is that all broken stowage factors are greater than 0.55. The last of these three assumptions is that the difference between broken stowage factors (ignoring sign) is less than 0.25.

The results of these three assumptions are shown on Table D.3 of appendix D. "Low %Cargo in Vehicle" is the lowest percentage of cargo that could be stored in vehicle stowage areas and still satisfy the three above assumptions. "High %Cargo in Vehicle" is the highest percentage of cargo that could be stowed in vehicle stowage areas and still satisfy the three above assumptions. The resulting reduced ranges are displayed

in Figures D.4 and D.5 of Appendix D. This considerably reduces the possible range of vehicle broken stowage factors and slightly reduces the possible range of cargo broken stowage factors.

F. FINAL ASSUMPTIONS AND CALCULATIONS

The assumptions up to this point are all quite reasonable:

- 1. All vehicle square footage is assumed to be stowed in vehicle stowage areas.
- 2. A vehicle broken stowage factor 6.9 percent greater than cargo stowage factor is assumed to be achievable.
- 3. Broken stowage factors are assumed to be greater than 0.55 and less than 0.95.
- 4. The absolute difference between cargo broken stowage factors and vehicle stowage factors is assumed to be less than 0.25.

Under these assumptions, the vehicle broken stowage factor generally takes on a smaller range for each ship then does the cargo broken stowage factor. The results from the eleven ships with Detailed Load Plans or detailed EPMRs show that the average vehicle broken stowage factor is 0.73. It is then assumed that all ships carry vehicles of similar types and composition. Combined with the general knowledge that all ships use the same type of tie-downs to secure vehicles and do so in a similar manner, it appears reasonable to conclude that all vehicle broken stowage factors are nearly 0.73. The percent of cargo that must be stowed in vehicle stowage areas to achieve a vehicle broken stowage factor of 0.73 (or as close to 0.73 as possible) while still satisfying the four assumptions above is displayed in the "0.73 Vehicle" column in Table D.3, Appendix D. This approach produces several cargo broken stowage factors of either exactly 0.55 or 0.95. The final alternative value of percent cargo in vehicle stowage areas (for ships
without detailed load plans) is developed by taking the average of percent cargo in vehicle stowage areas needed to achieve a vehicle broken storage factor of 0.73 or close to it (0.73 Vehicle) and the %Cargo in Vehicle from the 6.9 percent Difference Broken Stowage Factor Table (6.9 Percent).

$$\frac{\left[(0.73 \, Vehicle) + (6.9 \, Percent)\right]}{2} = Final \% Cargo in Vehicle Stowage Areas$$

The calculations to estimate actual %Cargo in Vehicle are displayed in Table D.3 of Appendix D. The final calculated broken stowage factors are in Table D.6 of Appendix D. Further evidence that these estimates are reasonable is seen in the small deviation of the average vehicle broken stowage factor from the results in the 6.9 percent difference table, a difference of only 0.004. These calculations in Table D.6 are considered to be the best estimate and are utilized for the remaining portion of this thesis.

V. ANALYSIS OF BROKEN STOWAGE FACTORS AND LOAD-OUTS

A. LANDING CRAFT

1. Notional Landing Craft Load-Out

"In order to calculate the amount of additional lift provided due to landing craft considerations, it is necessary to establish a notional boat plan." (1990 DoN Lift) In this context, a notional boat plan is the ideal number of landing craft loaded for each type of ship. In Annex J of the 1990 DoN Lift Study "this is accomplished by first loading Landing Craft Air Cushion (LCAC) to capacity in all potential LCAC-capable ships. The best fit of boats is then used to fill any remaining boat well space." The LCAC is clearly the landing craft of choice for over-the-horizon missions, "combining heavy lift capability of the surface assault with the high speeds of helicopterborne assault." (FMFRP 1-18)

Notional Landing Craft Load-out			
	LCAC	LCU	LCM8
LHD	3		
LHA	1	2	1
LPH			
LPD-4	1		2
LSD-36	3		
LSD-36M	2		
LSD-41	4		
LSD-49	2		
LST			

1990 DoN Lift

This method of determining landing craft load-out is appropriate when planning for a single combat mission or amphibious assault. This was the reasoning applied according to Lieutenant Colonel Jeffrey M. Parkinson who was the Amphibious Requirements Officer at Headquarters U.S. Marine Corps just prior to publishing the 1990 DoN Lift Study. This table is not, however, appropriate when considering sixmonth deployments because six-month deployments generally include multiple missions or contingency plans. In addition, Landing Craft Mechanized (LCM-8) boats are rarely used. For the purpose of this thesis the following table reflects the notional landing craft load-out for a six-month deployment.

Six-Month Deployment					
Notional Landing Craft Load-out					
	LCAC LCU				
LHD	3				
LHA		4			
LPH					
LPD-4	PD-4				
LSD-36	3				
LSD-36M	A 2				
_SD-41 4					
LSD-49	2				
LST					

This table reflects a typical load-out for six-month deployments. It is different from the 1990 Notional Landing Craft Load-out table only for the LHA and LPD-4 classes. It was developed using the 32 EPMRs discussed in Chapter IV and was confirmed by Major J. B. Scruggs, the Combat Cargo Officer for Commander, Amphibious Group Two.

2. Standard Preboat Load-Outs

a. Standard Landing Craft Air Cushion (LCAC) Preboat Load-Out

From the original sample set of 32 ship deployments, only ten were ships that embarked (loaded) LCACs. Out of those ten ships, only four provided the preboat load-out in square feet in their EPMR for a total of 13 LCACs. The following table lists this sample set of LCAC preboat load-outs (the three entries for the Kearsarge are from a single deployment but were listed individually in the EPMR):

LCAC PREBOAT LOAD-OUTS			
	Number		AVG
	Embarked	sqft	Load-out
Kearsarge	1	839	839
Kearsarge	1	718	718
Kearsarge	1	733	733
Ashland	4	4197	1049
Pensacola	3	3148	1049
Wasp	3	3173	1058

Annex J of the DoN Lift Study states "the average square feet of vehicles preloaded in the high threat case is about 750 SQFT; in the mid and low cases, about 700 SQFT. A reasonable <u>average load</u> which accounts for variations in landing plans is <u>720</u> <u>SQFT</u>" (original emphasis). This average LCAC preboat load-out number is used to calculate net ship lift capacity. However, the LCAC sample set has a mean of 985 square feet with a 95-percent confidence interval of approximately +/- 78 square feet (assuming constant area for LCACs aboard a ship, with the exception of the Kearsarge) and is expected to more accurately represent the standard LCAC preboat load-out.

LCAC Preboat Load-Out		
Descriptive Statistics		
Mean 985		
Standard Deviation 129		
Range 340		
Minimum 718		
Maximum 1058		
Count 13		
Confidence Interval(95.0%) 78.2		

b. Standard Landing Craft Utility (LCU) Preboat Load-Out

Sixteen amphibious ships from the original sample set of 32 EPMRs embarked LCUs. Out of those sixteen ships, twelve provided the preboat load-out in square footage for a total of 18 LCUs. The following table lists this sample set of LCU preboat load-outs (the four entries for the Saipan are from a single deployment but were

listed individually in the EPMR):

LCU PREBOAT LOAD-OUTS				
	Number AVG			
	Embarked	sqft	Load-out	
Shreveport (97)	1	1521	1521	
Ponce	1	1504	1504	
Oak Hill	1	1415	1415	
Saipan	1	1488	1488	
Saipan	1	1482	1482	
Saipan	1	1474	1474	
Saipan	1	711	711	
Nassau	4	3348	837	
Trenton (Jan 98)	1	1348	1348	
Trenton (Jan 96)	1	1369	1369	
Carter Hall	1	1593	1593	
Portland (Jan 98)	1	1426	1426	
Portland (Jan 96)	1	1580	1580	
Shreveport (Aug 95)	1	676	676	
Austin	1	1654	1654	

Annex J of the DoN Lift Study suggests that 1980 square feet is the standard preboat load-out for LCUs, and it uses this number to calculate ship net lift capacity. In contrast, the Amphibious Ships and Landing Craft Data Book (FMFRP 1-18) states that the cargo deck capacity for an LCU is 1850 square feet. The largest preboat load-out from the LCU sample set is 1654. This total sample set has a mean of 1255 square feet with a 95-percent confidence interval of approximately +/- 350 square feet (assuming constant area for LCUs aboard the Nassau). Six of the eighteen LCUs (33 percent) have a preboat load-out of less than 838 square feet. The remaining LCUs all have a preboat load-out greater than 1347 square feet. There is a considerable gap between these two groups. One reason for samples less than 838 square feet could be that these preboat load-outs allocate space for carrying troops. It is assumed that these

two groups do not come from a common distribution. Therefore, the smaller preboat load-outs are omitted to ensure we are using only completely full LCUs. The remaining sample set has a mean of 1488 square feet with a 95-percent confidence interval of approximately +/- 58 square feet (assuming constant area for LCUs aboard the Nassau) and is expected to more accurately represent the standard LCU preboat load-out. The following table contains descriptive statistics for the LCU preboat load-out sample set.

LCU Preboat Load-out Descriptive Statistics		
Mean	1488	
Standard Deviation	91	
Range	306	
Minimum 1348		
Maximum	1654	
Count	12	
Confidence Interval(95.0%) 58		

B. VEHICLE BROKEN STOWAGE FACTORS

1. Comparison Between Ship Classes

The following table lists in order of ship class, vehicle broken stowage factors from the data provided in Table D.6 of Appendix D. Data from the Guam has been excluded since the last LPH has been scheduled for decommissioning in 1998. Also given are rankings of the broken stowage factors from high to low.

		Vehicle Broken	Rank
Ship	Class	Stowage Factor	(high to low)
Wasp	LHD	0.761	5
Essex	LHD	0.615	24
Kearsarge	LHD	0.742	7
Boxer	LHD	0.765	4
Saipan	LHA	0.720	14
Belleau Wood	LHA	0.582	27
Nassau	LHA	0.688	20
Peleliu	LHA	0.608	25
Austin	LPD	0.707	16
Ogden	LPD	0.824	1
Cleveland	LPD	0.562	28
Juneau	LPD	0.747	6
Shreveport (97)	LPD	0.689	19
Shreveport (Aug 95)	LPD	0.678	21
Nashville	LPD	0.701	17
Trenton (Jan 98)	LPD	0.733	10
Trenton (Jan 96)	LPD	0.739	9
Ponce	LPD	0.699	18
Portland (Jan 98)	LSD-36	0.722	13
Portland (Jan 96)	LSD-36	0.668	22
Pensacola	LSD-36	0.644	23
Whidbey Island	LSD-41	0.777	3
Comstock	LSD-41	0.599	26
Tortuga	LSD-41	0.740	8
Ashland	LSD-41	0.709	15
Harpers Ferry	LSD-49	0.726	12
Carter Hall	LSD-49	0.728	11
Oak Hill	LSD-49	0.790	2
La Moure County	LST	0.555	29

The La Moure County will be dismissed since one sample from the LST class is insufficient to accurately represent that class of ship. When determining if the remaining six classes can be grouped together it must be determined whether the vehicle broken stowage factors from the different classes behave like independent samples from a common distribution. The null hypothesis (H_o) is that the entire sample set is from a common distribution. The alternative hypothesis (H₁) then is that the entire sample set is not from a common distribution.

Analysis of Variance Table

	Df	Sum of Sq	Mean Sq	F Value	Pr(F)
Class	5	0.0209	0.0042	1.0150	0.4326
Residuals	22	0.0907	0.0041		

An analysis of variance of these six classes with the usual assumptions (random samples from a normal population and constant variance) results in a p-value of 0.433. The null hypothesis (Ho) fails to be rejected; therefore the entire sample set is assumed to be from a common distribution. From the sample of 28 ships it has been determined that in order to predict vehicle broken stowage factors, all classes of ships can best be described in one single group. The mean vehicle broken stowage factor is estimated to be 0.702 with a 95-percent confidence interval of $\pm/-0.025$.

Mean	0.702
Standard Deviation	0.064
Range	0.262
Minimum	0.562
Maximum	0.824
Count	28
Confidence Interval(95.0%)	0.025

Vehicle Broken Stowage Factor

The LST and LSD36M classes are not adequately represented in the sample set.

However, it is expected that the LST and the LSD36M classes will behave like the other

classes.

ATLANTIC FLEET			
		Vehicle Broken	
Ship	Class	Stowage Factor	
Wasp	LHD	0.761	
Kearsarge	LHD	0.742	
Saipan	LHA	0.720	
Nassau	LHA	0.688	
Austin	LPD	0.707	
Shreveport (97)	LPD	0.689	
Shreveport (Aug 95)	LPD	0.678	
Nashville	LPD	0.701	
Trenton (Jan 98)	LPD	0.733	
Trenton (Jan 96)	LPD	0.739	
Ponce	LPD	0.699	
Portland (Jan 98)	LSD36	0.722	
Portland (Jan 96)	LSD36	0.668	
Pensacola	LSD36	0.644	
Whidbey Island	LSD41	0.777	
Tortuga	LSD41	0.740	
Ashland	LSD41	0.709	
Carter Hall	LSD49	0.728	
Oak Hill	LSD49	0.790	

2. Comparision Between Fleets

PACIFIC FLEET					
Vehicle Broken					
Ship	Ship Class Stowage Fac				
Essex	LHD	0.615			
Boxer	LHD	0.765			
Belleau Wood	LHA	0.582			
Peleliu	LHA	0.608			
Ogden	LPD	0.824			
Cleveland LPD 0.562		0.562			
Juneau	LPD	0.747			
Comstock	LSD41	0.599			
Harpers Ferry LSD49 0.726					

In the sample sets above the Atlantic Fleet achieves a mean value of 0.718 and the Pacific Fleet achieves a mean value of 0.67. Since the variances of the underlying populations may not be identical, a Welch Modified Two-Sample t-Test is used. Comparing the mean values of the two fleets results in a p-value of 0.1841 (bigger than the usual critical value of .05). Therefore, assuming that the values represent random samples, it is not clear whether the population from which Atlantic Fleet data is drawn has a mean vehicle broken stowage factor higher than that of the Pacific Fleet. Boxplots of the two fleets are provided below:

Welch Modified Two-Sample t-Test

```
t = 1.4368, df = 9.132, p-value = 0.1841
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
-0.0273 0.1231
sample estimates:
mean of x mean of y
0.7179 0.67
```


C. CARGO BROKEN STOWAGE FACTORS

1. Comparison Between Ship Classes

The following table lists in order of ship class, cargo broken stowage factors from the data provided in Table D.4 of Appendix D. Data from the Guam has been excluded since the last LPH has been scheduled for decommissioning in 1998. Also given are rankings of these cargo broken stowage factors from high to low.

		Cargo Broken	Rank
Ship	Class	Stowage Factor	(high to low)
Wasp	LHD	0.589	16
Essex	LHD	0.569	22
Kearsarge	LHD	0.756	6
Boxer	LHD	0.774	5
Saipan	LHA	0.479	29
Belleau Wood	LHA	0.584	17
Nassau	LHA	0.573	21
Peleliu	LHA	0.559	21
Austin	LPD	0.732	7
Ogden	LPD	0.628	11
Cleveland	LPD	0.528	27
Juneau	LPD	0.730	8
Shreveport (97)	LPD	0.830	3
Shreveport (Aug 95)	LPD	0.595	15
Nashville	LPD	0.584	18
Trenton (Jan 98)	LPD	0.675	10
Trenton (Jan 96)	LPD	0.697	9
Ponce	LPD	0.582	19
Portland (Jan 98)	LSD36	0.599	14
Portland (Jan 96)	LSD36	0.574	20
Pensacola	LSD36	0.562	23
Whidbey Island	LSD41	0.832	2
Comstock	LSD41	0.541	26
Tortuga	LSD41	0.814	4
Ashland	LSD41	0.622	12
Harpers Ferry	LSD49	0.549	25
Carter Hall	LSD49	0.838	1
Oak Hill	LSD49	0.615	13
La Moure County	LST	0.517	28

The La Moure County will be dismissed since one sample from the LST class is insufficient to accurately represent that class of ship. Once again, when determining if the remaining six classes can be grouped together it must be determined whether the cargo broken stowage factors from different classes behave like independent samples from a common distribution. The null hypothesis (H_0) is that the entire sample set is from a common distribution. The alternative hypothesis (H_1) then is that the entire sample set is not from a common distribution.

Analysis of Variance Table

	Df	Sum of Sq	Mean Sq	F Value	Pr(F)
Class	5	0.0696	0.0139	1.3588	0.2776
Residuals	22	0.2252	0.0102		

An analysis of variance of these six classes with the usual assumptions (random samples from a normal population and constant variance) results in a p-value of 0.278. The null hypothesis (Ho) fails to be rejected; therefore the entire sample set is assumed to be from a common distribution. From the sample of 28 ships it has been determined that in order to predict cargo broken stowage factors, all classes of ships can best be described

by one single group. The mean cargo broken stowage factor is estimated to be 0.643 with

a 95 percent confidence interval of +/-0.041.

Cargo Broken Sto	wage Factor
Mean	0.643
Standard Deviation	0.105
Range	0.359
Minimum	0.479
Maximum	0.838
Count	28
Confidence Interval(95.0%)	0.041

The LST and LSD36M classes are not adequately represented in the sample set. However, it is expected that the LST and LSD36M classes will behave like the other classes.

2. Comparison Between Fleets

ATLANTIC FLEET								
		Cargo Broken						
Ship	Class	Stowage Factor						
Wasp	LHD	0.589						
Kearsarge	LHD	0.756						
Saipan	LHA	0.479						
Nassau	LHA	0.573						
Austin	LPD	0.732						
Shreveport (97)	LPD	0.830						
Shreveport (Aug 95)	LPD	0.595						
Nashville	LPD	0.584						
Trenton (Jan 98)	LPD	0.675						
Trenton (Jan 96)	LPD	0.697						
Ponce	LPD	0.582						
Portland (Jan 98)	LSD36	0.599						
Portland (Jan 96)	LSD36	0.574						
Pensacola	LSD36	0.562						
Whidbey Island	LSD41	0.832						
Tortuga	LSD41	0.814						
Ashland	LSD41	0.622						
Carter Hall	LSD49	0.838						
Oak Hill	LSD49	0.615						

PACIFIC FLEET								
		Cargo Broken						
Ship	Class	Stowage Factor						
Essex	LHD	0.569						
Boxer	LHD	0.774						
Belleau Wood	LHA	0.584						
Peleliu	LHA	0.559						
Ogden	LPD	0.628						
Cleveland	LPD	0.528						
Juneau	LPD	0.730						
Comstock	LSD41	0.541						
Harpers Ferry	LSD49	0.549						

In the sample sets above the Atlantic Fleet achieves a mean value of 0.66 and the Pacific Fleet achieves a mean value of 0.607. Since the variances of the underlying populations may not be identical, a Welch Modified Two-Sample t-Test is used. Comparing the mean values of the two fleets results in a p-value of 0.1845. Therefore, assuming that the values represent random samples, it is not clear whether the population from which the Atlantic Fleet data is drawn has a mean cargo broken stowage factor higher than that of the Pacific Fleet. Boxplots of the two fleets are provided below:

Welch Modified Two-Sample t-Test

```
t = 1.375, df = 19.767, p-value = 0.1845
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
-0.0274     0.1330
sample estimates:
mean of x mean of y
    0.6595     0.6067
```


D. AMPHIBIOUS READY GROUP (ARG) LOAD-OUTS

There appears to be little gained by analyzing the load-outs of the ARGs as a group. There are no apparent trends in the amount of vehicle or cargo loaded or in broken stowage factors of ARGs. The table below provides the ships in each ARG, square feet of vehicle and cargo stowed in vehicle stowage areas (Vehicle Loaded), vehicle broken stowage factor (VBSF), cubic feet of cargo stowed in cargo stowage areas (Cargo Loaded), and the cargo broken stowage factor (CBSF) for each ship. Gunston Hall and Fort Fisher were not provided in the sample set, so the numbers from these two ships were interpolated using the averages for all LSDs. While most ARGs deploy with three ships, the Guam has regularly deployed with four ships in its ARG because the LPH class does not carry landing craft.

	Big	Vehicle		Cargo			Vehicle		Cargo			Vehicle		Cargo	
	Deck	Loaded	VBSF	Loaded	CBSF	LPD	Loaded	VBSF	Loaded	CBSF	lSD	Loaded	VBSF	Loaded	CBSF
Jan-96	Guam	3177	0.787	38018	0.804	Trenton	12656	0.739	39442	0.697	Portland	12751	0.668	1250	0.574
											Tortuga	15842	0.740	5438	0.814
Jul-96	Saipan	24109	0.720	92093	0.479	Austin	12155	0.707	39257	0.732	Gunston	13994	0.712	15765	0.633
Oct-96	Essex	17790	0.615	82505	0.569	Clevela	9183	0.562	24594	0.528	Harpers	14165	0.726	38234	0.549
Dec-96	Nassau	22060	0.688	117604	0.573	Nashvil	15992	0.701	25869	0.584	Pensacol	10390	0.644	2541	0.562
Mar-97	Boxer	22251	0.765	112136	0.774	Ogden	11390	0.824	27643	0.628	Fort Fish	13994	0.712	15765	0.633
Арт-97	Kearsa	19378	0.742	126260	0.756	Ponce	12407	0.699	28262	0.582	Carter H	16975	0.728	24651	0.838
Aug-97	Peleliu	19487	0.608	88708	0.559	Juneau	10361	0.747	35614	0.730	Comstoc	13807	0.599	1654	0.541
Oct-97	Guam	2951	0.859	32908	0.715	Shrever	12806	0.689	39384	0.830	Ashland	17731	0.709	4082	0.622
											Oak Hill	14409	0.790	39351	0.615
Jan-98	Wasp	20654	0.761	63537	0.589	Trenton	14376	0.733	38151	0.675	Portland	9467	0.722	1096	0.599
	AVG *	20818	0.700	97549	0.614	AVG	12370	0.711	33135	0.665	AVG	13994	0.712	15765	0.633

* AVG of Big Decks does not include Guam deployments

Each ARG is named after its big deck. In the table below, total ARG square feet of vehicle and cargo stowed in vehicle stowage areas (Total Vehicle) and total ARG cubic feet of cargo stowed in cargo stowage areas (Total Cargo) are provided for each ARG. The mean (AVG), standard deviation (STD DEV) and range for both vehicle broken stowage factors (VBSF), and the cargo broken stowage factors (CBSF) are provided for all ships in each ARG. The bottom of the table provides the mean (AVG), minimum (MIN) and (MAX) for each of these parameters for all ARGs.

		Total	AVG	STD DEV	RANGE	Total	AVG	STD DEV	RANGE
	ARG	Vehicle	VBSF	VBSF	VBSF	Cargo	CBSF	CBSF	CBSF
Jan-96	Guam	44426	0.733	0.049	0.120	84147	0.722	0.112	0.241
Jul-96	Saipan	50258	0.713	0.007	0.013	147115	0.615	0.127	0.253
Oct-96	Essex	41138	0.634	0.084	0.164	145333	0.549	0.021	0.041
Dec-96	Nassau	48442	0.678	0.030	0.056	146014	0.573	0.011	0.022
Mar-97	Boxer	47636	0.767	0.056	0.112	155543	0.678	0.083	0.145
Apr-97	Kearsarge	48760	0.723	0.022	0.043	179173	0.726	0.131	0.256
Aug-97	Peleliu	43655	0.651	0.083	0.147	125976	0.610	0.105	0.189
Oct-97	Guam	47897	0.762	0.078	0.170	115725	0.695	0.101	0.215
Jan-98	Wasp	44497	0.739	0.020	0.039	102784	0.621	0.047	0.086
	AVG	46301	0.711	0.048	0.096	133534	0.643	0.082	0.161
	MIN	4 1 138	0.634	0.007	0.013	84147	0.549	0.011	0.022
	MAX	50258	0.767	0.084	0.170	179173	0.726	0.131	0.256

VI. DETERMINING AMPHIBIOUS READY GROUPS (ARGs)

A. SCHEDULING DISCLAIMER

In both the Atlantic and Pacific Fleets an ARG is deployed for six-months at a time. An ARG traditionally consists of three ships: one big deck (LHA or LHD), one LPD, and one LSD. An ARG is generally always on station (Atlantic Fleet in the Mediterranean and the Pacific Fleet in the Western Pacific), which requires the oncoming ARG to arrive on station prior to the off-going ARG's departure. The schedule for a single amphibious ship may include a significant maintenance period, a work-up period of approximately 9 months, and finally, the six-month deployment in an ARG. Unplanned vacancies in the ARG schedule are generally filled by determining which amphibious ship is furthest along in its schedule and most ready for a six-month deployment. Therefore, it is conceded that the primary consideration in determining ARG schedules is not lift capability and that a change to the ARG schedule is extremely difficult and impractical. For purposes of this chapter, the number of schedule changes required to implement a proposed schedule is disregarded.

B. WORST-CASE LIFT CAPACITY

This chapter provides an example of scheduling using a linear programming model. It examines the possible benefits of creating an ARG schedule based primarily on lift capacity. The measure of effectiveness is "worst-case ARG lift capacity": an ARG schedule is assumed to be only as good as the ARG with the smallest lift capacity. The best schedule is therefore the schedule providing the greatest minimum (i.e., best worstcase) ARG lift capacity. Lift capacity is measured in terms of base troop capacity, net vehicle square footage, and net cargo cubic footage. The capacities used are explained in

39

Chapter VII and provided in the Net Capacities of Ships and Class Averages Table in Appendix E. It is assumed that each ARG requires one big deck, one LPD, and one LSD.

C. LINEAR PROGRAM MODEL

feet);

A mixed integer linear programming model is utilized to determine the best combinations of three ships for each ARG by mixing and matching LPDs and LSDs to the big decks in the schedule. This section defines requisite sets and indices, data elements, and decision variables and is followed by the model formulation.

Sets and Indices

i	Type of Amphibious Ship (e.g., Big Deck, LPD, or LSD);
j	Individual Amphibious Ship available for ARG schedule (e.g., Essex, Denver, Comstock,);
k	ARG designation (e.g., 1, 2, 3,);
Data (Units)	
<i>Troop_{ij}</i>	Troop base capacity for ship j of type i (troops);
Vehicle _{ij}	Net vehicle capacity for ship j of type i (square feet);
Cargo _{ij}	Net cargo capacity for ship j of type i (cubic feet);
P _{ijk}	Existing schedule, two when ship j of type Big Deck was assigned to ARG k, one when ship j of type LPD or LSD was assigned to ARG k, zero otherwise;
Decision Vari	ables (Units)
X_{ijk}	Proposed schedule, one when ship j of type i is assigned to ARG k, zero otherwise;
WT	Worst-case base troop capacity of all ARGs in proposed schedule (troops);
WV	Worst-case net vehicle capacity of all ARGs in proposed schedule (square

Worst-case net cargo capacity of all ARGs in proposed schedule (cubic feet);

Formulation

WC

$$MAX \quad WT + WV / (\sum_{i} \sum_{j} Vehicle_{ij} / \sum_{i} \sum_{j} Troop_{ij}) + WC / (\sum_{i} \sum_{j} Cargo_{ij} / \sum_{i} \sum_{j} Troop_{ij}) + \sum_{i} \sum_{j} \sum_{k} X_{ijk} P_{ijk}$$
(1)

Subject To:

$$\sum_{i} \sum_{j} X_{ijk} Troop_{ij} \ge WT \quad \forall k .$$
⁽²⁾

$$\sum_{i} \sum_{j} X_{ijk} Vehicle_{ij} \ge WV \quad \forall k .$$
(3)

$$\sum_{i} \sum_{j} X_{ijk} Cargo_{ij} \ge WC \quad \forall k .$$
(4)

$$\sum_{i} \sum_{k} Xijk \le 1 \qquad \forall j .$$
⁽⁵⁾

$$\sum_{j} Xijk \le 1 \quad \forall i,k .$$
 (6)

Constraint (2) measures the worst-case or smallest base troop capacity of all the ARGs in the schedule. Constraint (3) measures the worst-case or smallest net vehicle capacity of all the ARGs in the schedule. Constraint (4) measures the worst-case or smallest net cargo capacity of all the ARGs in the schedule.

Constraint (5) ensures each ship is scheduled at most once. Constraint (6) ensures that each ARG has at most one ship of each type.

The objective function (1) consists of four different terms. The first three terms simultaneously maximize the worst-case base troop capacity (WT), worst-case net vehicle capacity (WV), and the worst-case net cargo capacity (WC). Dividing WV by (sum of net vehicle capacity/sum of net troop capacity) and dividing WC by (sum of net cargo capacity/sum of net troop capacity) converts these terms to troop equivalent units

and it also scales all three terms so they are equally important. In this format the model will raise WT, WV, and WC to their maximum but one of these may dominate one or both of the others. If one of these lift capacities is determined to be more important by the user, then that lift capacity can be multiplied in the objective function by a coefficient larger than one (a coefficient of three is suggested) and the selected lift capacity will dominate the other two.

The fourth term of the objective function (1), the sum of $X_{ijk}P_{ijk}$ provides a negligible value and is used only as a tiebreaker. When this term is "large" it means that schedule changes are fewest. Without this term there may be more than one resulting ARG schedule that provides the same maximum objective value. Therefore, if there is more than one possible answer, the fourth term of the objective function selects the ARG schedule with the fewest changes from the existing schedule. Also, as a result, all ships of one type remain in the same ARG as in the existing schedule. To ensure that all big decks (instead of LPDs or LSDs) remain in the same ARG as in the existing schedule, P_{ijk} is a value of two (instead of one) for ship j of type Big Deck when it was assigned to ARG k in the existing schedule and zero otherwise.

D. PROPOSED AMPHIBIOUS READY GROUPS

1. Pacific Fleet Results

CPG-3 presently has twelve amphibious ships available for ARGs in six-month deployments: four big decks, four LPDs and four LSDs. The following are the results of the model (without lift capacity coefficients) compared to the existing ARG schedule;

42

EXIS	TING ARG	SCHEDULI	र.	PROPOSED ARG SCHEDULE						
	Base	NET	NET		Base	NFT	NFT			
	Troops	Vehicles	Cargo		Troops	Vehicles	Cargo			
Essex	1631	20603	92767	Essex	1631	20603	92767			
Cleveland	659	11361	29821	Ogden	724	11560	32751			
Harpers Ferry	405	13944	50386	Pearl Harbor	406	18770	43520			
	2695	45908	172974		2761	50934	169038			
Boxer	1688	20603	92767	Boxer	1688	20603	92767			
Ogden	724	11560	32751	Denver	673	13208	36387			
Pearl Harbor	406	18770	43520	Comstock	402	17287	4305			
	2818	50934	169038		2763	51098	133459			
Peleliu	1903	23686	101649	Peleliu	1903	23686	101649			
Juneau	682	11203	31221	Cleveland	659	11361	29821			
Comstock	402	17287	4305	Harpers Ferry	405	13944	50386			
	2987	52176	137176		2967	48991	181857			
Tarawa	1895	23384	101649	Tarawa	1895	23384	101649			
Denver	673	13208	36387	Juneau	682	11203	31221			
Mount Vernon	299	14555	1303	Mount Vernon	299	14555	1303			
	2867	51 1 47	139339		2876	49142	134173			
ARG AVG	2842	50041	154632	ARG AVG	2842	50041	154632			
STD DEV	121	2808	18996	STD DEV	99	1129	24601			
MINIMUM	2695	45908	137176	MINIMUM	2761	48991	133459			

WORST CASE

2.45% 6.71% -2.71%

OVERALL IMPROVEMENT 2.15%

While the worst-case net vehicle capacity and worst-case base troop capacity were improved, the worst-case net cargo capacity went down. In this case, net cargo capacity was dominated by the other two lift capacities. An overall improvement of only 2.15% is not expected to justify disruptions to the current ARG schedule. If however, the net vehicle capacity or base troop capacity is insufficient in the existing Essex ARG then the proposed schedule will provide the most overall improvement.

If only one lift capacity is important to the user, then the best possible worst-case result for that lift capacity has been determined. Each lift capacity is maximized one at a

time, and the results are provided in the table below in the individual best column. All three individual best results cannot be achieved at one time.

	WT	WV	WC
Individual Best	2761	49450	138706

Since, in the original model without coefficients, the worst-case cargo capacity (WC) was reduced, a solution increasing WC is provided. The final model considers the possibility that WC is more important than the other two lift capacities, and WV is more important than WT. To achieve this hierarchy, the coefficients of 0.5, 1.0, and 3.0 are used in the following objective function and the results of the model are provided below.

$$MAX \quad (.5)WT + WV / (\sum_{i} \sum_{j} Vehicle_{ij} / \sum_{i} \sum_{j} Troop_{ij}) + (3)WC / (\sum_{i} \sum_{j} Cargo_{ij} / \sum_{i} \sum_{j} Troop_{ij}) + \sum_{i} \sum_{j} \sum_{k} X_{ijk} P_{ijk}$$

AMPHIBIOUS READY GROUPS TO OPTIMIZE WORST-CASE LIFT CAPACITY WITH ONLY POSITIVE IMPROVEMENT

O	DARG SC	HEDULE		PROPOSED ARG SCHEDULE				
	Base	NET	NET		Base	NET	NET	
	Troops	Vehicles	Cargo		Troops	Vehicles	Cargo	
Essex	1631	20603	92767	Essex	1631	20603	92767	
Cleveland	659	11361	29821	Juneau	682	11203	31221	
Harpers Ferry	405	13944	50386	Pearl Harbor	406	18770	43520	
	2695	45908	172974		2719	50577	167508	
Boxer	1688	20603	92767	Boxer	1688	20603	92767	
Ogden	724	11560	32751	Cleveland	659	11361	29821	
Pearl Harbor	406	18770	43520	Harpers Ferry	405	13944	50386	
	2818	50934	169038		2752	45908	172974	
Peleliu	1903	23686	101649	Peleliu	1903	23686	101649	
Juneau	682	11203	31221	Ogden	724	11560	32751	
Comstock	402	17287	4305	Comstock	402	17287	4305	
	2987	52176	137176		3029	52533	138706	
Tarawa	1895	23384	101649	Tarawa	1895	23384	101649	
Denver	673	13208	36387	Denver	673	13208	36387	
Mount Vernon	299	14555	1303	Mount Vernon	299	14555	1303	
	2867	51147	139339		2867	51147	139339	
ARG AVG	2842	50041	154632	ARG AVG	2842	50041	154632	
STD DEV	121	2808	18996	STD DEV	140	2875	18164	
MINIMUM	2695	45908	137176	MINIMUM	2719	45908	138706	

WORST CASE **IMPROVEMENT**

0.00% 0.89% 1.12%

OVERALL

0.67%

IMPROVEMENT

Once again the improvement is negligible. As long as the existing schedule meets the lift requirements of an ARG six-month deployment, then this small improvement does not justify disruptions to the current ARG schedule. If however, the net cargo capacity of 137,176 cubic feet is insufficient for the Peleliu ARG then the proposed schedule will provide the best possible improvement.

In addition, using the model has demonstrated that both WV and WC cannot both be simultaneously improved from the existing schedule. If improving one, the best that can be done with the other is to maintain the status quo.

The table below provides a summary of results in this section for the Pacific Fleet (CPG-3); the existing schedule, results from both models, and the individual best for each lift capacity.

	WT	WV	WC
Existing Schedule	2695	45905	137176
Model without Coefficients	2761	48991	133459
Individual Best	2761	49450	138706
Model with Coefficients	2719	45908	138706

2. Atlantic Fleet Results

CPG-2 presently has eighteen amphibious ships available for ARGs in six-month deployments: five big decks, five LPDs and eight LSDs. With more LSDs than any other type of ship, the question arises of how to best utilize all the LSDs. Historically, big deck and LPD combinations have remained the same in a five-ARG rotation, while LSD assignments have fluctuated due to their greater numbers and longer interdeployment periods. The rotation for the LSDs is not consistent since LSDs are sometimes used for a UNITAS six-month deployment. When the model is used for these eighteen ships it will choose the five LSDs that will provide the best results; three LSDs will not be utilized.

a. Two Ship Combinations

It is first assumed that CPG-2 wishes to continue to rotate all LSDs in the ARG schedule. The logical use of the model then is to determine the Big Deck and LPD combinations that achieve the best results, and let the LSDs fall where they may in their rotation. For purposes of comparison a typical schedule was used.

TYPICAL ARG SCHEDULE				PRC	PROPOSED ARG SCHEDULE		
	Base	NET	NET		Base	NET	NET
	Troops	Vehicles	Cargo		Troops	Vehicles	Cargo
Nassau	1903	27189	133396	Nassau	1903	27189	133396
Nashville	659	13105	30809	Nashville	659	13105	30809
	2562	40294	164205		2562	40294	164205
Kearsarge	1894	21546	106820	Kearsarge	1894	21546	106820
Ponce	728	12567	31334	Ponce	728	12567	31334
	2622	34112	138154		2622	34112	138154
Bataan	1737	21297	93423	Bataan	1737	21297	93423
Shreveport	665	12956	30365	Austin	727	11884	34334
	2402	34253	123788		2464	33181	127757
Wasp	1894	19763	92767	Wasp	1894	19763	92767
Trenton	721	13930	36195	Trenton	721	13930	36195
	2615	33694	128962		2615	33694	128962
Saipan	1904	27189	124627	Saipan	1904	27189	124627
Austin	727	11884	34334	Shreveport	665	12956	30365
	2631	39073	158961		2569	40145	154991
ARG AVG	2566	36285	142814	ARG AVG	2566	36285	142814
STD DEV	96	3139	17985	STD DEV	73	3338	16939
MINIMUM	2402	33694	123788	MINIMUM	2464	33181	127757

BIG DECK - LPD COMBINATIONS TO OPTIMIZE WORST-CASE LIFT CAPACITY

WORST-CASE			
IMPROVEMENT	2.58%	-1.52%	3.21%

1.42%

OVERALL IMPROVEMENT

While the worst-case net cargo capacity and worst-case troop capacity were improved, the worst-case net vehicle capacity went down. In this case, net vehicle capacity was dominated by the other two lift capacities. An overall improvement of only 1.42% is not expected to justify disruptions to the current ARG schedule. If however, the net cargo capacity or base troop capacity in the current schedule is insufficient, then the proposed schedule will provide the most overall improvement.

Net cargo capacity and net troop capacity in the proposed schedule is the best that can possibly be achieved. In a second attempt, using a coefficient of three with WV in the objective function ensures that net vehicle capacity dominates and the following results can be achieved. These results are only a slight improvement from the typical schedule. The only difference from the typical schedule is that the Shreveport will deploy with the Kearsarge and the Ponce will deploy with the Bataan.

	WT	WV	WC
WV Dominating	2465	33694	124757
Improvement	2.62%	0.00%	0.78%
Overall Improvement	1.14%		

b. FIFTEEN SHIP AMPHIBIOUS READY GROUP SCHEDULE

If CPG-2 desires to choose only the best fifteen ships to use in the ARG schedule then this model can be used to determine that schedule. In addition the results are expected to show the three LSDs that contribute least to lift capacity of the ARG schedule. For purposes of comparison a typical schedule was used.

AMPHIBIOUS READY GROUPS TO OPTIMIZE WORST-CASE LIFT CAPACITY

TYP	ICAL AR	G SCHED	ULE	
	Base	NET	NET	
	Troops	Vehicles	Cargo	
Nassau	1903	27189	133396	N
Nashville	659	13105	30809	N
Pensacola	303	9839	2940	T
	2865	50133	167144	
Kearsarge	1894	21546	106820	K
Ponce	728	12567	31334	Т
Carter Hall	405	20812	51722	G
	3027	54924	189876	
Bataan	1737	21297	93423	В
Shreveport	665	12956	30365	P
Oak Hill	405	18280	43660	Ο
	2807	52533	167448	
Wasp	1894	19763	92767	M
Trenton	721	13930	36195	S
Portland	276	13683	1394	C
	2891	47377	130356	
Saipan	1904	27189	124627	S
Austin	727	11884	34334	A
Tortuga	393	17301	4305	A
	3024	56373	163266	
ARG AVG	2923	52268	163618	A
STD DEV	99	3621	21349	S
MINIMUM	2807	47377	130356	M

PROPOSED ARG SCHEDULE						
	Base	NET	NET			
	Troops	Vehicles	Cargo			
Nassau	1903	27189	133396			
Nashville	659	13105	30809			
Tortuga	393	17301	4305			
	2955	57595	168510			
Kearsarge	1894	21546	106820			
Trenton	721	13930	36195			
Gunston Ha	404	17301	4305			
	3019	52777	147320			
Bataan	1737	21297	93423			
Ponce	728	12567	31334			
Oak Hill	405	18280	43660			
	2870	52144	168417			
Wasp	1894	19763	92767			
Shreveport	665	12956	30365			
Carter Hall	405	20812	51722			
	2964	53531	174854			
Saipan	1904	27189	124627			
Austin	727	11884	34334			
Ashland	408	17301	4305			
	3039	56373	163266			
ARG AVG	2969	54484	164473			
STD DEV	62	2455	12020			
MINIMUM	2870	52144	147320			

WORST-CASE			
IMPROVEMEN	2.24%	10.06%	13.01%

OVERALL 8.44%

LSDs NOT USED			LSDs NOT USED				
Whidbey Isl	399	16945	4305	Whidbey Isl	399	16945	4305
Ashland	408	17301	4305	Portland	276	13683	1394
Gunston Ha	404	17301	4305	Pensacola	303	9839	2940

Base troop capacity and net cargo capacity both reached their highest possible value and dominated net vehicle capacity. Net vehicle capacity almost reached its highest possible value of 52,682. In this case all three lift capacities showed improvement. Improvements of thirteen- percent for net cargo capacity, over ten-percent for net cargo capacity, and over eight-percent for overall improvement are all quite considerable.

These results show that when all LSDs are used in a rotation cycle there is a significant amount of lift capacity that is sacrificed in some ARGs. The Portland and the Pensacola clearly contribute least to lift capacity. The Pensacola is scheduled for decommissioning in the fourth quarter of fiscal year 1999, so little argument is necessary to remove the Pensacola from the ARG schedule. If the Portland (or the Pensacola) must be left in the rotation, it should not be scheduled to deploy with the Wasp or Bataan ARGs. It is preferred that the Portland be scheduled with the Saipan or Nassau ARGs. Since the Whidbey Island, Ashland, Gunston Hall, and the Tortuga have similar lift capacities any one of these ships could be substituted for another. The Whidbey Island can be used to replace these other three other ships in the schedule with little change to the worst-case lift capacity.

VII. RESULTS AND CONCLUSIONS

A. BROKEN STOWAGE FACTORS

Vehicle and cargo broken stowage factors for all ship classes can most accurately be estimated by the following averages.

Average	Average
Vehicle Broken	Cargo Broken
Stowage Factor	Stowage Factor
0.70	0.64

The results of this thesis are in agreement with the 1990 DoN Lift Study for Vehicle broken stowage factor. Cargo broken stowage factor, however, is a significant decrease from the 1990 DoN Lift Study. A large portion (80-90%) of cargo spaces onboard amphibious ships is for ammunition. The compatibility restrictions of ammunition may explain the lower result for the cargo broken stowage factor. After these results were achieved, it was discovered that the same result of 0.64 was observed during Desert Storm for ammunition on breakbulk/container type ships (not exactly the same, but similar to amphibious ships) according to the Military Traffic Management Command in their Logistics Handbook for Strategic Mobility Planning. (MTMCTEA REFERENCE 97-700-2)

B. LANDING CRAFT

The following Notional Landing Craft Load-out Table lists the expected landing craft embarked on each class of ship for a six-month deployment.

Six-Month Deployment						
Notional Landing Craft Load-out						
LCAC LCU						
LHD	3					
LHA		4				
LPH						
LPD-4		1				
LSD-36	3					
LSD-36M	2					
LSD-41	4					
LSD-49	2					
LST						

The expected preboat load-outs for LCACs and LCUs average 985 and 1490 square feet respectively.

C. NET LIFT CAPACITIES OF SHIPS AND CLASS AVERAGES TABLE

The net capacity for each ship is determined by applying the above planning factors to gross lift values provided in the Gross Capacities of Ships and Class Averages Table in Appendix B. Troop bunks are the same value for gross and net. Net cargo capacity (cubic footage) is determined by multiplying the gross cargo capacity by the cargo broken stowage factor.

Net vehicle capacity (square footage) is determined by multiplying the gross vehicle capacity by the vehicle broken stowage factor and then adding preboat load-out. Preboat load-out is determined by multiplying the notional landing craft load-out value by the expected preboat load-out for the appropriate landing craft.

$$Net Vehicle = \begin{pmatrix} Gross \\ Vehicle \\ \end{pmatrix} \times \begin{pmatrix} Vehicle \\ Stowage \\ Factor \end{pmatrix} + \begin{pmatrix} Notional \\ Landing \\ Craft \\ Load-out \\ \end{pmatrix} \times \begin{pmatrix} Expected \\ Preboat \\ Load-out \end{pmatrix}$$

The following example shows the net vehicle capacity determined for the Ponce (LPD-15).

$$12,332 = (15,824 \times 0.70) + (1 \times 1,255)$$

The resulting Net Capacities of Ships and Class Averages Table is provided in Appendix E.

D. DETERMINING AMPHIBIOUS READY GROUPS (ARGs)

With respect to the linear programming model discussed in Chapter VI, two conclusions can be drawn. First, the model itself would be of greater value when circumstances dictate that an ARG's lift capacity is given priority over other scheduling considerations. Second, the ARG lift capacity in the Atlantic Fleet can be significantly improved by simply removing the Pensacola and the Portland from the ARG schedule.

E. OBSERVATIONS AND RECOMMENDATIONS

Each ship should be able to maintain accurate capacity figures in its SLCP. In each SLCP, capacities in the Troop Cargo Capacities (section I) and the Troop Cargo Space Capability Breakdown (section VIII) should be in agreement. It is recommended that the validated capacities maintained by the CCOs at CNSL or CNSP be referred to when updating SLCPs. While it is recognized that every ship is different, it is nonetheless recommended that the Detailed Gross Capacities Table in Appendix C be utilized to provide consistency in compartments, cargo types, and capacities reported within ships in a class.

Review of Appendix C will show some disparities between SLCP totals and CNS(P/L) data. Given only these references and an inability to remeasure amphibious ship capacities, the correct capacity was determined to the best of the author's ability. It may be advisable to reexamine the SLCPs and capacities when a disparity exists.

53

Correctly interpreting EPMRs became the most difficult part of this thesis. The results of this thesis are dependent on the accuracy of these EPMRs. Presently the lift summary of the EPMR provides square footage and cubic footage of the different cargo categories of an entire ship. When a cargo category was reported in both square footage and cubic footage, it sometimes could not be determined if cargo was reported using both measurements or if two different groups of cargo were being reported. It was apparent that different CCOs were using different methods. It may be helpful to divide the lift summary into two sections, cargo stowage areas and vehicle stowage areas. It may also be helpful for the Pacific Fleet to adopt the Atlantic Fleet method of reporting square footage and cubic footage in the Organizational Recap section of the EPMR.

APPENDIX A. GLOSSARY OF TERMS AND ACRONYMS

- ARG Amphibious Ready Group
- BSF Broken Stowage Factor is applied to the available space for embarkation due to the loss between boxes, between vehicles, around stanchions, and over cargo. (Joint Pub 3-02.2)

Big Deck - refers to an LPH, LHA, or LHD.

- CCO Combat Cargo Officer is an embarkation officer assigned to major amphibious ships or naval staffs, functioning primarily as an adviser to and representative of the naval commander in matters pertaining to embarkation and debarkation of troops and their supplies and equipment. (Joint Pub 1-02)
- CNSL Commander, Naval Surface Forces U.S. Atlantic Fleet (COMNAVSURFLANT)
- CNSP Commander, Naval Surface Forces U.S. Pacific Fleet (COMNAVSURFPAC)
- Combat Loading The arrangement of personnel and the storage of equipment and supplies in a manner designed to conform to the anticipated tactical operation of the organization embarked. Each individual item is stowed so that it can be unloaded at the required time. (Joint Pub 1-02)
- CPG Commander Amphibious Group (COMPHIBGRU), the commander of a PHIBGRU will normally have amphibious squadrons (PHIBRONs) administratively assigned to it. In addition the PHIBGRU is capable of simultaneous tactical control of assigned units in executing all phases of an amphibious operation, up to and including a Marine Expeditionary Force-size or equivalent organization if required. (Joint Pub 3-02.2)
- Detailed Load Plans All of the individually prepared documents which, taken together, present in detail all instructions for the arrangement of personnel, and the loading of equipment for one or more units or other special grouping of personnel or material moving by highway, water, rail or air transportation. (Joint Pub 1-02)
- DFM Diesel Fuel Marine
- DoN Department of the Navy
- EPMR Embarked Personnel Material Report gives a consolidated, concise and up-todate report of embarked personnel, equipment, and cargo. It is sent by message from each amphibious ship upon departure for a deployment or exercise.
- JP-5 Aviation Fuel

- GAMS The General Algebraic Modeling System is a high-level modeling system for mathematical programming problems. It consists of a language compiler and a stable of integrated high-performance solvers. GAMS is tailored for complex, large scale modeling applications, and allows you to build large maintainable models that can be adapted quickly to new situations.
- Landing Craft A craft employed in amphibious operations, specifically designed for carrying troops and equipment and for beaching, unloading, and retracting. Also used for logistic cargo resupply operations. Also used for logistic cargo resupply operations. (Joint Pub 1-02)
- LCAC Landing Craft Air Cushion is designed to land heavy vehicles, equipment, personnel, and cargo in an amphibious assault with the high speeds of a helicopterborne craft.
- LCC Amphibious Command Ship is a naval ship designed to serve as a floating command center, providing control facilities for embarked sea, air, and land commanders and their staffs.
- LCM-8 Landing Craft Mechanized designed to land heavy vehicles, equipment, personnel, and cargo in an amphibious assault.
- LCU Landing Craft Utility designed to land heavy vehicles, equipment, personnel, and cargo in an amphibious assault.
- LFORM Landing Forces Operational Reserve Material
- LPD Amphibious Transport Dock is a naval ship designed to transport and launch loaded amphibious craft and vehicles with their crews and embarked personnel in amphibious assault, and to render limited docking and repair service to small ships and craft; and one that is capable of acting as a control ship in an amphibious assault
- LPH Amphibious Assault Ship (helicopter) is a naval ship designed to transport and land troops and their essential helicopter transportable equipment and supplies by means of embarked helicopters during and amphibious assault.
- LHA Amphibious Assault Ship (general purpose) is a naval ship designed to embark, deploy, and land elements of a Marine landing force in an amphibious assault by helicopters, landing craft, amphibious vehicles, or a combination of these methods. (Joint Pub 1-02)
- LHD Amphibious Assault Ship (multipurpose) is a naval ship designed to embark, deploy, and land elements of a Marine landing force in an amphibious assault by helicopters, landing craft, amphibious vehicles, or a combination of these methods.
- LSD Dock Loading Ship is a naval ship designed to transport and launch loaded amphibious craft and vehicles with their crews and embarked personnel in amphibious assault, and to render limited docking and repair service to small ships and craft; and one that is capable of acting as a control ship in an amphibious assault. (Joint Pub 1-02)
- LST Tank Landing Ship is a naval ship designed to run up to the beach, lower their extended bow ramp, and offload tanks, artillery, and logistic vehicles.
- MAGTF Marine Air-Ground Task Force is a task organization of Marine forces (division, aircraft wing and service support groups) under a single command and structured to accomplish a specific mission. The Marine Air-Ground Task Force components will normally include command, aviation combat, ground combat, and combat service support elements (including Navy Support Elements) (Joint Pub 1-02)
- MOGAS Motor Gasoline
- OPNAV Office of the Chief of Naval Operations
- Outsized Cargo cargo that is larger than the generally accepted "standard pallet," and may be either mounted on a pallet or skids. It also includes large items that are not classified as vehicles, but must be considered separately due to handling/stowage requirements.
- POL Petroleum, Oils, and Lubricants
- Preboat The load-out or vehicle and cargo carrying capacity of landing craft carried in amphibious ships.
- Primary Control Ship In amphibious operations, a ship of the task force designated to control the movement of landing craft, amphibious vehicles, and landing ships to and from a beach.
- Regular Cargo this thesis uses this term to refer to all cargo that is not classified as Outsized cargo.
- SLCP Ship's Loading Characteristic Pamphlet
- Undesignated Cargo this thesis uses this term to refer to cargo where the location of stowage cannot be determined for certain. It could be stowed in either vehicle or cargo stowage areas.

APPENDIX B. GROSS CAPACITIES OF SHIPS AND CLASS AVERAGES TABLE

					Gross	Gross				SLCP
St	up	Т	roop Bunl	ks	Vehicle	Cargo	I	Bulk POL (GA		Approval
		Base	Surge	Total	(sqft)	(cuft)	MOGAS	DFM	JP5	Date
LHD1	Wasp	1894	211	2105	24012	144948	0	1882249	484310	910201
LHD2	Essex	1631	182	1813	25212	144948	0	1882249	484310	970730
LHD3	Kearsarge	1894	213	2107	26558	166906	0	1897777	439685	960101
LHD4	Boxer	1688	184	1872	25212	144948	0	1882249	484310	961016
LHD5	Bataan	1737	184	1921	26203	145973	0	1854710	604915	971201
AVG		1769	195	1964	25439	149545	0	1879847	499506	
LHA1	Tarawa	1895	0	1895	24891	158827	8000	N/A	415940	970701
LHA2	Saipan	1904	0	1904	30327	194729	10865	N/A	417000	971201
LHA3	Belleau Wood	1904	0	1904	23120	116111	8000	N/A	415940	960601
LHA4	Nassau	1903	0	1903	30327	208431	10847	N/A	417009	961001
LHA5	Peleliu	1903	0	1903	25323	158827	8000	N/A	400000	980201
AVG		1902	0	1902	26798	167385	9142	0	413178	
LPH2	Guam	1542	206	1748	4036	47315	0	834000	290000	960207
AVG		1542	206	1748	4036	47315	0	834000	290000	
LPD4	Austin	727	188	915	14848	53647	21375	725975	205943	971201
LPD5	Ogden	724	202	926	14386	51174	23510	763199	236390	961112
LPD6	Duluth	698	221	919	16174	58869	18000	736199	216791	980201
LPD7	Cleveland	659	179	838	14102	46596	22114	?	282265	980201
LPD8	Dubuque	674	184	858	13857	56823	22069	763199	278913	960401
LPD9	Denver	673	178	851	16740	56854	20000	780337	283000	951209
LPD10	Juneau	682	178	860	13876	48783	23114	712531	303055	?
LPD12	Shreveport	665	176	841	16380	47445	23000	828366	332000	970301
LPD13	Nashville	659	208	867	16593	48139	22114	828337	333529	970601
LPD14	Trenton	721	198	919	17772	56555	17600	860919	350000	950811
LPD15	Ponce	728	192	920	15824	48960	23114	?	350625	931201
AVG		692	191	883	15505	52168	21455	777674	288410	
LSD49	Harpers Ferry	405	101	506	17105	78728	0	797764	50000	960816
LSD50	Carter Hall	405	101	506	26917	80816	0	755658	53230	961001
LSD51	Oak Hill	405	101	506	23300	68219	0	795701	53230	970915
AVG		405	101	506	22441	75921	0	783041	52153	
LSD41	Whidbey Island	399	100	499	18578	6727	0	797764	53000	970515
LSD42	Germantown	403	101	504	19087	6727	0	797764	53000	960301
LSD43	Fort McHenry	413	100	513	19087	6727	0	797764	53000	960301
LSD44	Gunston Hall	404	101	505	19087	6727	0	796164	50569	971201
LSD45	Comstock	402	102	504	19067	6727	0	838079	53000	970701
LSD46	Tortuga	393	102	495	19087	6727	0	797764	53000	940322
LSD47	Rushmore	403	101	504	19067	6727	0	?	53000	?
LSD48	Ashland	408	101	509	19087	6727	0	838081	53230	970311
AVG		403	101	504	19018	6727	0	943897	52725	
LSD36	Anchorage	334	0	334	17712	2753	0	N/A	31396	?
LSD39	Mount Vernon	299	58	357	16572	2036	0	N/A	31396	?
LSD40	Fort Fisher	248		320	17712	2044	0	N/A	31396	?
AVG	LSD36M Class	294	43	337	17332	2278	0	N/A	31396	
LSD37	Portland	276	64	340	16733	2178	0	949232	31386	960531
LSD38	Pensacola	303	20	323	11242	4593	0	920676	31387	970915
AVG	LSD36 Class	290	42	332	13988	3380	0	934954	31387	
LST 1184	Frederick	314	72	386	17501	4356	7197	229000	19055	?
LST 1194	La Moure County	315	68	383	16609	4339	7197	310000	19000	971201
AVO		315	/0	385	17055	4348	/19/	269500	19027.5	·····
TOTALS		34,034	4,749	38,783	769,323	2,509,686	296,116	30,152,951	8,830,601	
TOTALS w/	o Guam & Ft Fisher	32,244	4,471	36,715	747,575	2,460,327	296,116	29,318,951	8,540,601	
LCC19	Blue Ridge	224	0	224	N/A	15056	0	N/A	?	?
LCC20	Mount Whitney	209	0	209	2336	17539	0	N/A	120399	971201
AVG		217	0	217	2336	16298	0	N/A	120399	

APPENDIX C. DETAILED GROSS CAPACITIES TABLE

			LHD			
		Veh	icle Square	Feet		
Compartment	Wasp	Essex	Kearsarge	Boxer	Bataan	
3rd Deck	14974	16174	14974	14974	N/A	
1st Platform	9038	9038	9038	9038	N/A	
SLCP Total	24012	25212	24012	24012	0	
Gross, used in Appendix B	24012	25212	26558	25212	26203	This Line Considered to be Actual
CNS(P/L)	24012	25212	26558	25212	N/A	
1990 DoN Lift	25500	N/A	N/A	N/A	N/A	

		Ca	rgo Cubic H	Teet		
Cargo Type	Wasp	Essex	Kearsarge	Boxer	Bataan	
Ammunition	119860	119860	139697	119860	N/A	
Pyrotechnics	2909	2909	3317	2909	N/A	
Jettisonable Lockers	21	21	25	21	N/A	
POL (Packaged)	22158	22158	23867	22158	N/A	
SLCP Total	144948	144948	166906	144948	0	
Gross, used in Appendix B	144948	144948	166906	144948	158827	This Line Considered to be Actual
CNS(P/L)	144948	144948	166906	144948	N/A	
1990 DoN Lift	166600	N/A	N/A	N/A	N/A	

			<u>LHA</u>			
		Veh	icle Square	Feet		
Compartment	Tarawa	Saipan	Belleau Wo	Nassau	Peleliu	
3rd Deck	16161	21197	17941	21197	16161	
lst Platform		9130	5179	9130		
4th Deck	8730				9162	
SLCP Total	24891	30327	23120	30327	25323	
Gross, used in Appendix B	24891	30327	23120	30327	25323	This Line Considered to be Actual
CNS(P/L)	24891	36163	23120	36163	24891	
1990 DoN Lift	28700	28700	28700	28700	28700	

	Cargo Cubic Feet									
Cargo Type	Tarawa	Saipan	Belleau Wo	Nassau	Peleliu					
General	18330	62252	23859	55442	23849					
Ammunition	118709	121900	83324	141755	128580					
Pyrotechnics	2700		2160		2700					
Fuel Air Explosives	5374									
White Phosphorus	4762									
Demo		21								
Jettison Lockers		71								
POL (Packaged)	9759	10485	6768	11234	9217					
SLCP Total	159634	194729	116111	208431	164346					
Gross, used in Appendix B	158827	194729	116111	208431	158827	This Line Considered to be Actual				
CNS(P/L)	158827	208237	116111	208431	158827					
1990 DoN Lift	128200	146200	137400	146600	147700					

The First Platform (Aft) on the Saipan and Nassau is a dual purpose space. The after portion is equipped with cargo tie-down tracks for stowage of outsized or heavy lift cargo. The SLCP totals assume this space is used for cargo, while the CNSL numbers have counted this area twice for both vehicle square feet and cargo cubic feet.

<u>LPD-4</u> Vehicle Square Fe

				V CIL	cie Square	1001					
Compartment	Austin	Ogden	_Duluth	Cleveland	Dubuque	Denver	Juneau	Shreveport	Nashville	Trenton	Ponce
Upper Vehicle	6960	7128	7625	6727	5911	7110	6549	7343	7556	8736	7452
Lower Vehicle	7888	7258	8549	7375	7946	9630	7327	9037	9037	9036	8372
SLCP Total	14848	14386	16174	14102	13857	16740	13876	16380	16593	17772	15824
Gross, used in Appendix B	14848	14386	16174	14102	13857	16740	13876	16380	16593	17772	15824
CNS(P/L)	14848	14083	14083	14102	13858	12329	13876	16380	16593	17772	15824
DoN Lift	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000

				Car	go Cubic F	eet					
Cargo Type	Austin	Ogden	Duluth	Cleveland	Dubuque	Denver	Juneau	Shreveport	Nashville	Trenton	Ponce
Ammunition	47129	44672	50780	41061	55368	50276	42100	41394	42319	43148	42977
Pyrotechnics	1502	1280	933	753	975	989	994	842	842	1088	968
Demo		531	457	337	456	460	492	357	357	492	421
Jettison Lockers	354	40	360	371	24	384	480	42	50	0	64
Special Weapons	4662	4651	6339	4074		4745	4717	4810	4571	4312	4459
POL (Packaged)										7515	
SLCP Total	53647	51174	58869	46596	56823	56854	48783	47445	48139	56555	48889
Gross, used in Appendix B	53647	51174	58869	46596	56823	56854	48783	47445	48139	56555	48960
CNS(P/L)	53647	51174	51188	51188	56553	56845	48783	47445	48139	56555	48960
1990 DoN Lift	55900	46200	55500	48200	51000	49700	50100	56000	50900	49800	48800

<u>LSD-49</u> Vehicle Square Feet

1 010	ere oquare		
Harpers Fe	Carter Hall	Oak Hill	
5830	7925	7808	
	1184	1184	
3738	3245	3615	
713	2227	1565	
6824	12336	9128	
17105	26917	23300	
17105	26917	23300	This Line considered to be Actua
14127	26917	23505	
20200	N/A	N/A	
	Harpers Fe 5830 3738 713 6824 17105 17105 14127 20200	Harpers Fe Carter Hall 5830 7925 1184 3738 3245 713 2227 6824 12336 17105 26917 17105 26917 14127 26917 20200 N/A	Harpers Fe Carter Hall Oak Hill 5830 7925 7808 1184 1184 3738 3245 3615 713 2227 1565 6824 12336 9128 17105 26917 23300 17105 26917 23300 14127 26917 23505 20200 N/A N/A

Cargo Cubic Feet

Cargo Type	Harpers Fe	Carter Hall	Oak Hill	
General Cargo	13158	18966	12070	
Ammunition	61868	57846	51427	
Pyrotechnics		316	88	
Demo		18	16	
Jettison Lockers		4	1	
Lithium Batteries		82	64	
POL (Packaged)	3702	3584	2901	
SLCP Total	78728	80816	66567	
Gross, used in Appendix B	78728	80816	68219	This Line considered to be Actua
CNS(P/L)	50777	80816	68219	
1990 DoN Lift	67600	N/A	N/A	

				LSD-41					
			Veh	icle Square	Feet				_
Compartment	Whidbey I	Germantov	Fort McHe	Gunston H	Comstock	Tortuga	Rushmore	Ashland	
Flight Deck	7935	8444	8444	8444	8440	8444	N/A	8444	
Stbd Deck/Tunnel	2389	2389	2389	2389	2389	2389	N/A	2389	
Turntable	1018	1018	1018	1018	1002	1018	N/A	2016	
Well Deck w/4 LCACs	7236	7236	7236	7236	7236	7236	N/A	7236	
SLCP Total	18578	19087	19087	19087	19067	19087	0	20085	
Gross, used in Appendix B	18578	19087	19087	19087	19067	19087	19067	19087	This Line considered Actual
CNS(P/L)	18431	19067	19067	18431	19067	18431	19067	18431	
1990 DoN Lift	14600	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

			Ca	rgo Cubic I	reet				
Cargo Type	Whidbey	Is Germantov	Fort McHe	Gunston H	Comstock	Tortuga	Rushmore	Ashland	
Ammunition	3924	3924	3924	3924	3924	3924	N/A	3924	
Pyrotechnics	396	396	396	396	396	396	N/A	396	
Demo	598	598	598	598	598	598	N/A	598	
Thermite Grenade Lkr	16						N/A		
Lithium Batteries	84						N/A		
Jettison Lockers			4	84	4	84	N/A	84	
POL (Packaged)	1725	1725	1725	1725	1725	1725	N/A	1725	
SLCP Total	6743	6643	6647	6727	6647	6727	0	6727	
Gross, used in Appendix B	6727	6727	6727	6727	6727	6727	6727	6727	This Line considered Actual
CNS(P/L)	6691	6727	6727	6727	6727	6727	6727	6727	
1990 DoN Lift	6807	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Subtracting Whidbey Island, Thermite Grenade Lkr from Total achieves 6727 Well Deck data is with 4 LCAC's different than 90 DoN Lift notional lift

LSD-36M Vehicle Square Feet

Compartment	Anchorage	Mount Ver	Fort Fisher
Super Deck	N/A	N/A	3865
Flight Deck	N/A	N/A	4661
Mezzanine Deck	N/A	N/A	7052
SLCP Total	0	0	15578
Gross, used in Appendix B	17712	16572	17712
CNS(P/L)	17712	16572	17712
1990 DoN Lift	8800	8800	8800

	Ca	rgo Cubic I	feet
Cargo Type	Anchorage	Mount Ver	Fort Fisher
General Cargo	N/A	N/A	
Ammunition	N/A	N/A	1853
Pyrotechnics	N/A	N/A	
Demo	N/A	N/A	99
Jettison Lockers	N/A	N/A	92
Thermite Lockers	N/A	N/A	
SLCP Total	0	0	2044
Gross, used in Appendix B	2753	2036	2044
CNS(P/L)	2753	2036	2044
1990 DoN Lift	2612	1477	2207

LSD-36 Vehicle So	mare Feet	
Portland	Pensacola	
3653	3045	
4680	4543	1
8400	3654	
16733	11242	
16733	11242	This Line considered to be Actual
3653	7548	
8800	8700	

Cargo Cu	bic Feet	_
Portland	Pensacola	
1595	1512	
190	1512	
60	1512	
	52	
9	5	
1854	4593	
2178	4593	This Line considered to be Actua
2178	1584	
1913	1025	

le Stowa	Aroac
n Vehic	n Caroc
s Loaded i	is Stowed in
Cargo i	Caroo
ll Outsized	Pomoining
ssuming Al	[[] A] La
~	

Be

			A/P indicates the Atlantic/Pacific Fleet			UKUDD: total capacity for storage prior to load-out, in square footage for vehicle stowage and	cubic Pootage for cargo stowage (from Appendix B)		VEHICLE LOADBD: total vehicles and cargo in square footage stowed in vehicle stowage	areas		Web Backweiter DT OA NDD minne der mehren het het der	Vell - Freudal: V DATICLES LUADED MILLIUS UR PREUDATION		Vehicle Broken Stowage: (Veh - Preboat)/(Gross-Space Available)		CARGO LOADED: total cargo in cubic footage loaded in cargo stowage spaces	• • • • • • • • • • • • • • • • • • • •	Caroo Broken Stowage: CARGO LOADFD/(Gross-Space Available)			O Cargo II VEIDCIS. HIS DETENTAGE OF OURSTEED CAR OF CONSIDERED UP DE TOADED III VEIDCIS	slowage areas		Cargo BS - Veh BS: is the difference in the two broken stowage factors		Space Available: space remaining after load-out is complete reported in both square footage	and entric footage (not displayed on this table)	(anone size as further soil) agains a size			Note: These assumptions could not be correct since they yield broken stowage factors above	1.0.												
	go BS	eh BS	-0.173	-0.046	0.014	0.399	0.063	-0.241	0.165	-0.426	-0.049	-0.171	0.130	0.489	0.025	0.095	0.096	-0.662	0.190	0.586	0.589	0.814	0.708	0.193	0.280	-1.184	1.491	-0.576	-0.322	0.004	1.309	-0.194	1.054	-0.713	0.458	-0.580	0.061	-0.592	-0.441	-0.171				1.491	-1.184
	Cargo Ca	Vehicle - V	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0		1.0				MAX	MIN
	% 0	: Stow In	0.589	0.569	0.756	0.984	0.735	0.479	0.757	0.421	0.559	0.526	0.795	0.922	0.732	0.769	0.571	0.297	0.863	1.077	1.102	1:279	1.192	0.807	0.878	0.000	2.046	0.108	0.334	0.644	1.944	0.409	1.743	0.011	1.120	0.264	0.808	0.341	0.392	0.388	1374683	2017733	0.681	2.046	0.000
OWAGE	Care	ELD Bro	3537	2505	5260	2012	28.5	6603	3496	5358	\$708	3.75	5568	3617	3257	3835	5591	1504	0942	9435	3806	2347	1427	9184	3233	0	3741	236	509	667	5495	1250	636	70	2.75	3404	3765	813	327	682			-	IAX	NIN
ARGO ST	S CARG	LOAD	48 62	48 82	06 126	48 142	38 1037	29 9:	11 8	31 8(27 88	25 8766	15 3(15 4	47 39	74 33	96 24	83 14	45 4(45 49	39 48	55 7:	55 6.	90	30 4	14	18	78	93	83 1828.0	27 13	21	27 11	12	27 636	28 15	16 2:	19 21	21 21	39			Overal	2	~
C/	GROSS	(Cull)	1 1449	5 14494	2 1669(4 14494	2 1504	0 1947:	1 1161	6 2084	8 1588:	7 1695	5 473	473	7 536	4 5117	5 465	9 4871	3 474	2 474	3 481	565	5 565:	4 489	8 505	4 20	21.	4 21	45	0 29	5 67	2 67	67:	4 67	2 61	181.	1 808	3 682	3 759	9 43	2	6	100	4	9
	د ده	tow	0.76	0.61	0.74	0.58	0.67	0.72	0.59	0.84	0.60	0.69	0.66	0.43	0.70	0.67	0.47	0.95	0.67	0.49	0.51	0.46	0.48	0.61	0.59	1,18	0.55	0.68	0.65	0.64	0.63	0.60	0.68	0.72	0.66	0.84	0.74	0.93	0,83	0.55	37918	55334	0.68	1.18	0.43
S	Vehicl	Brok	81	8	88	36	01	54	75	8	36	Z	84	48	01	35	94	5	17	56	12	76	1	86	74	05	89	\$6	76	37	91	35	80	4	86	78	19	10	10	85				×	z
IE AREA	eh -	reboal	174	155	170	147	162	189	136	230	153	111	22	17	105	82	8	133	110	18	85	82	74	95	16	204	61	114	13	83	117	109	110	138	118	141	157	153	151	92			verall	MA	W
E STOWAC	HICLE V	ADED P	20654	17790	19378	17692	18879	24109	16631	26348	19487	21644	2284	1748	12155	9540	7949	13307	12538	8832	12880	9624	8770	11090	10669	21900	7615	13026	10524.4	10388	14894	13861	15021	18011	15447	16148	17372	16761	16760	9285			0		
VEHICL	BROSS VE	(Sqft) LO	24012	25212	26558	25212	25249	30327	23120	30327	25323	27274	4036	4036	14848	14386	14102	13876	16380	16593	16593	17772	17772	15824	15815	17712	16733	16733	11242	14903	18578	19067	19087	19087	18955	17105	26917	23300	22441	16609					
_	-	-	<	Р	<	4		<	Р	A	4		<	V	<	Р	4	Р	۷	۷	۷	<	<	4		Ρ	V	<	<	-	V	Р	V	<		Р	<	<	-	9 A					
	:	Hull No.	LHD-I	LHD-2	LHD-3	LHD-4	LHD	LIIA-2	LHA-3	LHA-4	LHA-5	LHA	LPH-9	LPH-9	LPD-4	LPD-5	LPD-7	LPD-10	LPD-12	LPD-12	LPD-13	LPD-14	LPD-14	LPD-15	LPD-4	LSD-40	LSD-37	LSD-37	LSD-38	LSD-36	LSD-41	LSD-45	LSD-46	LSD-48	LSD-41	LSD-49	LSD-50	LSD-51	LSD-49	LST-117					
		Ship	Wasp *	Essex *	Kearsarge *	Boxer	CLASS AVG	Saipan	Belleau Wood	Nassau	Pelellu *	CLASS AVG	Guam (Oct 97) *	Guani (Jan 96)	Austin *	Ogden *	Cleveland	Juneau	Shreveport (97) **	Shreveport (Aug 95)	Nashville	Trenton (Jan 98)	Trenton (Jan 96)	Ponce	CLASS AVG	Fort Fisher	Portland (Jan 98)	Portland (Jan 96)	Pensacola	CLASS AVG	Whidbey Island	Constock	Tortuga	Ashland **	CLASS AVG	Harpers Ferry	Carter Hall **	Oak Bill **	CLASS AVG	La Moure County					

APPENDIX D. BROKEN STOWAGE FACTOR CALCULATIONS

Table D.1. Outsized Cargo in Vehicle Stowage Areas

Table D.2. 6.9 Percent Difference in Broken Stowage Factors

This charl is a good slarting point, but the assumption that Vehicle Broken Stowage Pactor is 6.8 percent greater than Cargo Broken Stowage Factors is too restrictive.

Harpers Ferry did nol achieve a Vehicle Broken Stowage Pactor of 6.8 Percent Greater than Cargo Broken Stowage Pactor. Fort Fisher is the only stirp to exceed Broken Stowage Pactors of 1.0 and therefore will be removed from the sample population.

0.65 0.67 Average (7 ships with detailed EPMRs) Average (4 ships with Detailed Load Plans) Average (11 ships with detailed EPMRs or Load Plans)

0.642 Average(-Forl Fisher)

Hsh	
(-Port	
Overall	
0	

2015739

0.175

0.4215

0.9899

2 LCAC

0.110

0.488

ILCU I LCU

0.838 0.627

1730 0316

0.549

0.615 0.488 1284785

51405 4202 21549

17292 42932

21327 1682

80816 58219

0.726 0.728 0.790 0.746 0.556

8728

2195 5382 2116

4339

9234

0

9234

15921

3523

6010	0.731	0,729	0.730
histori i un r-lagora u	Average (7 ships with detailed EPMRs)	Average (4 ships with Detailed Load Plans)	l ships with detailed EPMRs or Load Plans)

Average (11 ships with detailed EPMRs or Load Plans)

_	
Ther	ber)
HI	PIs
104-	-Port
i all	are
Ď	Aver

0.700

541098 0.699

378207

Detailed Load Plans Provided for 4 Ships

detailed EPMIRs for 7 ships

:

a Moure County LST-1179 CLASS AVG LSD-49 Oak Hill **

2		Spa	Ava					-												_										
IUWay	EAS	utsized	argo	24600	33667	15374	43351	29248	58538	36677	65574	48146	52234	12920	10251	20035	25216	32774	23275	25130	24405	19576	22541	18093	14460	22551	15120	1230	4666	7521
C HANDIG	WAGE ARI	gnated 0	0	0	0	0	142612	35653	0	20689	0	0	5172	3660	8418	0	6192	9386	0	6702	22632	48806	55016	67427	32718	24888	0	3741	0	0
III Cargo	CARGO STC	ular Undesl	go Cargo	63537	82505	26260	0	68076	92093	62807	86358	88708	82492	32908	35199	39257	27643	17205	14504	34240	26803	0	17331	0	6466	18345	0	0	236	1509
Learer una		ARGO Reg	OADED Carl	63537	82505	126260 1	105999	94575	108835	67913	122293	88708	96937	32908	36674	39257	27643	23550	33915	39384	21767	27394	37721	38433	29819	32488	3269	1186	1302	2596
O IIIan I		ROSS C	Cun) L	144948	144948	166906	144948	150438	194729	116111	208431	158827	169525	47315	47315	53647	51174	46596	48783	47445	47445	48139	56555	56555	48960	50530	2044	2178	2178	4593
IS U.Y LE		'ehicle C	rok Stow (0.761	0.615	0.742	0.800	0.729	0.635	0.685	0.665	0.608	0.648	0.859	0.844	0.707	0.824	0.575	0.764	0.689	0.674	0.688	0.736	0.748	0.684	0.707	1.627	. 0.717	0.667	0.644
IUWABE		/eh - 1	reboat E	17481	15500	17088	20175	17560.95	16723	15839	18069	15386	16504	2951	3408	10501	10135	8102	10598	11285	11186	11415	13088	11427	10668	10841	19930	7986	11156	7235
C HANDIO		reboal	oad-oul F	3173	2290	2290	2956	2677	5155	955.69231	3348	4101	3890	0	0	1654	1255	1255	0	1521	676	4368	1348	1369	1504	1495	1970	1426	1580	3148
A EINCIE I	AREAS	pace P	vailable L	1050	0	3534	0	1146	4007	0	3147	•	1789	009	0	0	2089	0	0	0	0	0	0	2498	220	481	5461	5600	0	0
IE HIGH	STOWAGE	Outsized S	Cargo A	3994	4676	2138	6021	4207	7802	5094	8999	7641	7384	2061	1294	2877	3621	4552	3248	3172	3413	2726	3120	2513	2518	3176	2100	512	1268	981.4
INSSE	VEHICLE	Indesignated	argo	0	0	0	20629	5157	0	2873	0	0	718	667	1913	0	1850	2464	0	931	3165	6665	7641	9364	4611	3669	0	2520	0	0
		thicle U	sported C	16660	13114	17240	11671	14671	16307	11537	17349	11846	14260	223	454	9278	5919	3397	10059	9366	5419	10154	6504	6257	8572	7493	19800	7103	11758	9543
		EHICLE V	OADED R	20654	06771	19378	23131	20238	21878	18795	21417	19487	20394	2951	3408	12155	11390	9357	10598	12806	11862	15783	14436	12796	12172	12336	21900	9412	12736	10383
		BROSS V	(Sqf) L	24012	25212	26558	25212	25249	30327	23120	30327	25323	27274	4036	4036	14848	14386	14102	13876	16380	16593	16593	17772	17772	15824	15815	17712	16733	16733	11242

GROSS

Hull No.

LHD-1 LHD-2

LHD-4 LIID-3

carsarge *

xer

Essex *

dsa

CLASS AVG LHD

-0.173 -0.046 0.014 -0.069

1.000 1.000 1.000 0.430

3 LCAC 3 LCAC 3 LCAC

0.731

0.7569

3 LCAC 4LCU 3LCU 4LCU

0.670

› Cargo Cargo BS › Vehicl· - Veh BS

anding LCAC

Cargo

actors

Craft

Brok Slow 0.589

ilable 37000

0.069 0.069 0.069 0.049 0.066

0.714 0.911 0.452 1.000

0.616

0.566 0.596

9250 2502 5807 3147

2CU1CA

0.559

LLHA-2 LLHA-3 LLHA-4 LHA-5

elleau Wood

LPH-9 LPH-9 LPD-4

uanı (Oct 97) *

aın (Jan 96)

gden * le veland

* ullsu

LHA

CLASS AVG

Pelellu *

Vassau

4 LCU

0,582 0.715

2864

AN A

0.144

1.000

N/A 1LCU 1LCU

0.628 0.505

7169

< <

LPD-5 LPD-7 LPD-10 LPD-12 LPD-12

neau

LPD-14 LPD-14 LPD-15

enton (Jan 98)

ashville

nlon (Jan 96)

e Cu

LPD-13

hreveport (Aug 95) rreveport (97) **

0.732

0.025 -0.196 -0.069 -0.069 0.141 0.141

1.000 1.000 0.850 0.166 0.838 0.838 0.838 0.980 0.599

N/A I LCU ILCU

0.695

0.830 0.605

1560

-0.069 -0.069 -0.069 -0.069 -0.069

0.551

0.618 14 AAV 0.667 1 LCU 0.680 1 LCU 0.614 1 LCU 0.660 1 LCU 14 AAV

0.069 0.069

0.762 0.856

I LCU

649

14460 15120 15120 1230 4666 7521 7521

3,598 0.575

3 LCAC

3 LCAC

0.596

75

013 0.069

000

CAC

350 300 320

0.069 -0.069 -0.087 -0.057

0.984

4 LCAC

0.679

300 3668 50 1046 9039

22828 3600 5731 18825 19830

0.531

0.300

LCAC

0.653

0.069

0.917

VAN 01 3 LCAC 0.622 4 LCAC LCAC

0.715

13142

2495 0 11636 0 6033

38433 29819 32488 3269 1186 1302 1302 1595 1695 4594 4534 4534 4651 33709 38234 38709 38734 39351 39351

0.784

4571

2983

0.667 0.644 0.674 0.600 0.709 0.710

7986 1156 7235 8792

676 676 676 676 1348 1348 1349 1369 13148 1349 1426 1349 1426 1497 1497 1497 1497 1970 1970 1970 1659 1415

867

840 0 662 308

0844

CLASS AVG LSD-36

LSD-41 LSD-45

hidbey Island

onislock

LSD-37 LSD-37 LSD-38

11242 4903 8578 19067 19087 9087 8955 26917 23300 6000

LSD-40

'orl Fisher 'ortland (Jan 98)

ortiand (Jan 96)

insacola

CLASS AVG LPD-4

0 236 1509 582 0 0 1250 0 1250 1250 2330 23305 23765 21813

6121 6121 6121 6121 6121

0.748

0855

3534

960 3000 312 312 312 312 4321

4165 6596 2695 4485 4198

LSD-49 LSD-50

Carler Hall **

arpers Perry

LSD-41

CLASS AVG

ushland **

ortuga

LSD-51

LSD-46 LSD-48

7674 3811 5982 5982 5982 6300 6300 6300 6373 6975 6975 5183 5183

VEHICLE STOWAGE AREAS	CARGO STOWAGB ARBAS
GROSS: total capacity for storage prior to load-out in square footage for vehicle stowage areas (from Appendix B)	GROSS: total capacity for storage prior to load-out in cubic footage for cargo stowage areass (from Appendix B)
VEHICLB LOADED: total vehicles and cargo in square footage stowed in vehicle stowage areas {VEHICLB LOADED = Vehicle Reported + (Unknown Cargo + Outsized Cargo) * % Cargo in Vehicle}	CARGO LOADBD: total cargo in cubic footage loaded in cargo stowage spaces {CARGO LOADBD = Vehicle Reported + (Unknown Cargo + Outsized Cargo) * (1 - % Cargo in Vehicle)
Vehicle Reported: total vehicle loaded	Regular Cargo: all regular cargo that is stowed in cargo stowage areas
Unknown Cargo: regular cargo that may be stowed in either cargo stowate or vehicle stowage areas in square footage	Unknown Cargo: regular cargo that may be stowed in either cargo stowage or vehicle stowage areas in cubic footage
Outsized Cargo: in square footage	Outsized Cargo: in cubic footage
Space Available: space remaining after load-out is complete reported in square footage	Space Available: space remaining after load-out is complete reported in cubic footage
Preboat Loadout: square footage stowed in landing craft	Cargo Broken Stowage: CARGO LOADED/(GROSS-Space Available)
Veh - Preboat: VEHICLE LOADED minus the Preboat Load-out	
Vehicle Broken Stowage: (Veh - Preboal)/(GROSS-Space Available)	
Landing Craft: describes type and nu	iber of landing craft embarked
% Cargo in Vehicle: the percentage of the bencentage of the bencentage of the loaded in vehicle stowage areas	Outsized Cargo and Regular Cargo 2 considered to
Cargo BS - Veh BS: is the difference	in the two broken stowage factors

Explanation of Table 2 and Table 4 Headings

Low % Cargo in Vehicle is the lowest possible value for %	Cargo in Vehicle Stowage Areas and still meet the above assumptions: Reoken Stowage Vehicle and Cargo are the	accompanying Broken Stowage Factors		High % Carpo in Vehicle is the highest possible value for $\%$	Carno in Vahiola Stourana Arose and still moot the above	Cargo in venicio do wage rucas and sun nicet are acove	assumptions, Broken Mowage Vehicle and Cargo are the	accompanying Broken Stowage Factors		Size of Reduced Ranges is the size of the ranges of Vehicle	and Cargo Broken Slowage Factors and the % Cargo in	Vehicle after the above assumptions are met		Minimum is the small set are as Webble and Carry Darbare	Munimum is ure similest range of Venicle and Cargo Broken	Stowage Factors and % Cargo in Vehicle		The final column is the AVG of and the % Cargo in Vehicle	when Vehicle Broken Stowage is 0.73 or as close to 0.73 and	still meet the above assumptions(0.73 Vehicle) and the %	Caron in Vehicle Stowage Areas to achieve a 6.0 %	Varge un venicie provage Aneas to achieve a 0.2 %	ullicience in Dioken Slowage Factors (0.9 Fercent), taken	from the 6.9 Percent Table		The final column is the % Cargo in Vehicle Stowage used to	determine final calculations in Table 4.											
	> .	1.000	1.000	1.000	0.397		0.741	0.956	0.524	1.000		1.000	0.849	1.000	1.000	0.825	0.093	0.838	066.0	0.622	0.732	0.539	0.538		0.780	0.783	0.863		0.904	0.982	0.643	0.300		0.000	0.488	0.422		0.987
rcent Differeno	73 Broken Stor	000.1	1.000	1.000	0.430		0.714	0.911	0.452	1.000		1.000	0.921	1.000	1.000	0.850	0.166	0.838	0.980	0.599	0.737	0.551	0.505		0.762	0.772	0.856		0.917	0.984	0.702	0.300		0.000	0.488	0.422		0.990
VG of 6.8 Pe	nd Close to 0 73 Vehicles				0.364		0.768	1.000	0.595				0.777			0.800	0.020		1.000	0.644	0.726	0.527	0.571		0.798	0.794	0.870		0.890	0.981	0.584			0.000				0.984
<	ar NN	0.174	0.065	0.092	0.214	0.139	0.102	0.158	0.157	0.057	0.120	0.123	0.137	0.077	0.171	0.000	0.099	0.070	0.097	0.111	0.150	0.170	0.132	0.108	0.039	0.013	0.017	0.023	0.024	0.007	0.026	0.008	0.016	0.000	0.037	0.130	0.056	0.004
nges	Cargo hicle N	000.1	0.350	1.000	0.214	0.641	0.343	0.458	0.490	0.190	0.370	0.341	0.347	0.397	0.385	0.000	0.421	0.280	0.245	0.196	0.247	0.218	0.290	0.268	0.143	0.166	0.197	0.169	0.046	0.039	0.175	0.370	0.158	0.000	1.000	0.525	0.508	0.014
educed Ra	e Factor %	0.228	0.081	0.092	0.274	0.169	0.104	0.238	0.157	0.058	0.139	0.123	0.137	0.148	0.275	0.000	0.201	0.188	0.251	0.303	0.339	0.330	0.281	0.232	0.388	0.356	0.327	0.357	0.400	0.293	0.400	0.323	0.354	0.000	0.059	0.249	0.102	0.135
Size of R	iroken Stowag	0.174	0.065	0.093	0.226	0.139	0.102	0.158	0.162	0.057	0.120	0.271	0.276	0.077	0.171	0.000	0.099	0.070	0.097	0.111	0.150	0.170	0.132	0.108	0.039	0.013	0.017	0.023	0.024	0.007	0.026	0.008	0.016	0.000	0.037	0.130	0.056	0.004
48	Cargo B	-	-	-	0.5072	0.877	0.768	-	0.595	1	0.841	-	-	-	-	0.8	0.421	-	-	0.644	0.8225	0.63	0.571	0.789	11977	0.794	0.87	0.821	0.9365	0.981	0.759	0.37	0.762	0	-	0.525	0.508	0.984
Ŧ	ctor %	0.589	0.569	0.756	0.632	0.637	0.550	0.569	0.550	0.559	0.557	0.715	0.744	0.732	0.628	0.550	0.574	0.722	0.584	0.550	0.550	0.559	0.550	0.600	0.550	0.550	0.550	0.550	0.550	0.550	0.550	0.561	0.553	0.549	0.808	0.566	0.641	0.550
	in Stowage Par	0.761	0.615	0.742	0.882	0.750	0.651	0.716	0.712	0.608	0.672	0.859	0.907	0.707	0.824	0.550	0.823	0.729	0.682	0.713	0.788	0.810	0.714	0.734	0.727	0.668	0.645	0.680	0.794	0.599	0.757	0.711	0.715	0.726	0.747	0.816	0.763	0.554
┡	Broke	0	0.65	0	5635	.236	.425	.542	.105	0.81	.471	.659	529	603	.615	0.8	0	0.72	.755	448	5755	1116	2815	.521	.655	5276	5735	.652	8903	418	5838	0	.604	0	0	0	000.	0.97
Low	%Cargo	5	6	0	5 0.2	5 0	4	3	7 0	5	5 0.	0	1 0.6	0	3				2	2	0.5	0.4	2 0.2	0	3	5 0.4	8 0.6	7 0.	3.0 0.8	3 0.5	0.5		7 0	6	-	4	3 0	-
	age Factor	0.816	0.650	0.849	0.900	0.805	0.654	0.808	0.707	0.616	0.696	0.838	0.881	0.880	0.903	0.550	0.774	0.910	0.835	0.852	0.885	0.890	0.832	0.831	9:038	0.900	3//80	0.907	0.950	0.843	0.950	0.884	0.907	0.545	0.867	0.814	0.745	0.684
	Broken Stows	0.587	0.550	0.649	0.656	0.611	0.550	0.558	0.550	0.550	0.552	0.588	0.631	0.630	0.653	0.550	0.725	0.659	0.585	0.602	0.639	0.640	0.582	0.626	0.688	0.656	0.628	0.657	0.770	0.592	0.731	0.703	0.699	0.726	0'110	0.686	0.707	0.550
	Tutt No.	HD-1 A	HD-2 P	HD-3 A	HD4 P	CHD	A 2-AH.	HA-3 P	HA-4 A	HA-5 P	HA	A 9-H4.	A 9-H4.	PD-4 A	PD-5 P	PD-7 P	PD-10 P	.PD-12 A	.PD-12 A	PD-13 A	PD-14 A	PD-14 A	.PD-15 A	LPD-4	A 76-02.	SD-37 A	SD-38 A	LSD-36	.SD-41 A	SD-45 P	.SD-46 A	SD-48 A	LSD-41	"SD-49 P	.SD-50 A	SD-51 A	LSD-49	ST-1179 A
	Shin 1	Wasp *	Essex *	Kearsarge *	Boxer	CLASS AVG	Saipan I	Belleau Wood 1	Nassau	Peieliu * 1	CLASS AVG	Guani (Oct 97) * 1	Guam (Jan 96)	Auslin *	Ogden * 1	Cleveland	Juneau	Shreveport (97) ** 1	Shreveport (Aug 95) 1	Nashville I	Frenton (Jan 98) 1	Trenton (Jan 96)	Ponce	CLASS AVG 1	Portland (Jan 98)	Portland (Jan 96)	Pensacola	CLASS AVG	Whidbey Island	Constock	Tortuga	Ashland ** 1	CLASS AVG	Harpers Ferry	Carler Hall **	Oak Hill ** 1	CLASS AVG	La Moure County

0.007

0.039

0.058

MIM

Table D.3. Reduced Ranges 0.007

Reducing the Range of Possible Broken Stowage Factors and Percent Cargo in Vehicle Stowage by Assuming all Broken Stowage Factors are Greater than 0.55 and Less than 0.95

and Assuming the Difference between Cargo and Vehicle Broken Stowage Factors are Less than 0.25

Vehicle Broken Stowage Reduced Ranges

Cargo Broken Stowage Reduced Ranges

FINAL CALCULATIONS Broken Stowage Factors with Preboat Loadout Subtracted Considered To Be ACTUAL

	Γ				VEHICLE	STOWAG	E AREAS						CARG	O STOWAGE	AREAS					
		GROSS	VEHICLE	Vehicle	Undesignated	Outsized S	pace P	reboat	ehicle -	Vehicle	Gross	CARGO	Regular	Undesignated	Outsiz	ed Space	Cargo	Landing	% Cargo	Cargo BS
Ship Hull No	ċ	(Jagan)	LOADED	Reported	Cargo	Cargo /	Available L	oad-out F	reboat	Brok Stow	(Cuft)	LOADED	Cargo	Cargo	Cargo	Availabl	e Brok Sto	wCraft	in Vehicl	· Veh BS
Wasp * LHD-1	<	24012	20654	16660	0	3994	1050	3173	17481	0.761	144948	63537	63537		0 24(500 370	00 0,58	9 3 LCAC	1.000	-0.173
Essex * LHD-2	4	25212	17790	13114	0	4676	0	2290	15500	0.615	144948	82505	82505		0 33(201	0 0.56	9 3 LCAC	1.000	-0.046
Kearsarge * LHD-3	<	26558	19378	17240	0	2138	3534	2290	17088	0.742	166906	126260	126260		0 153	374	0 0.75	6 3 LCAC	1.000	0.014
Boxer LHD-4	Ρ	25212	22251	11671	20629	6021	0	2956	19295	0.765	144948	112136	0	1420	12 43	351	0 0.77	A 3 LCAC	0.397	0.008
CLASS AVG LHD		25249	20018	14671	5157	4207.25	1146.	2677.	17341	0.719	150438	96109	68076	356	53 292	248 92	50 0.68	1 3 LCAC		-0.039
Saipan LHA-2	<	30327	24109	16307	0	7802	4007	5155	18954	0.720	194729	92093	92093		0 585	538 25	02 0.47	9 4 LCU	1.000	-0.241
Belleau Wood LHA-3	Ч	23120	16404	11537	2873	5094	0	2956	13449	0.582	116111	64439	62807	206	89 360	58 21	07 0.58	4 3LCU	0.956	0.003
Nassau LHA-4	V	30327	22060	17349	0	8999	3147	3348	18712	0.688	208431	117604	86358		0 65	574 31.	47 0.57	3 4 LCU	0.524	-0.116
Peleliu * LHA-5	Р	25323	19487	11846	0	7641	0	4101	15386	0.608	158827	88708	88708		0 481	146	0 0.55	9 2CUICAC	1.000	-0.049
CLASS AVG LHA	Γ	27274	20515	14260	718	1384	1789	3890	16625	0.652	169524.5	90711.034	82492	51	72 52:	234 228	64 0.54	4 4 LCU		-0.108
Guam (Oct 97) * LPH-9	<	4036	2951	223	667	2061	009	0	2951	0.859	47315	32908	32908	36	60 129	020 12	91 0.71	S N/A	000.1	-0.144
Guam (Jan 96) LPH-9	V	4036	3177	454	1913	1294	0	0	3177	0.787	47315	38018	35199	òò	118 102	251	0.80	M/N	0.849	0.016
Austin * LPD-4	<	14848	12155	9278	0	2877	0	1654	10501	101.0	53647	39257	39257		0 20(335	0 0.73	11 LCU	1.000	0.025
Ogden * LPD-5	P	14386	11390	5919	1850	3621	2089	1255	10135	0.824	51174	27643	27643	6	92 25:	216 71	69 0.62	B ILCU	1.000	-0.196
Cleveland LPD-7	4	14102	9183	3397	2464	4552	0	1255	7929	0.562	46596	24594	17205	6	86 327	174	0 0.52	11LCU	0.825	-0.034
Juneau LPD-10	- L	13876	10361	10059	0	3248	0	0	10361	0.747	48783	35614	14504		0 23;	2/2	0 0.73	00 N/A	0.093	-0.017
Shreveport (97) ** LPD-12	A 2	16380	12806	9366	166	3172	0	1521	11285	0.689	47445	39384	34240	<i>'</i> 9	102 25	130	0 0.83	0 ILCU	0.838	0.141
Shreveport (Aug 95) LPD-12	V 2	16593	11930	5419	3165	3413	0	919	11254	0.678	47445	27285	26803	220	532 244	105 15	60 0.59	S ILCU	0.990	-0.084
Nashville LPD-13	8 A	16593	15992	10154	6665	2726	0	4368	11624	0.701	48139	25869	0	486	806 195	576 38	47 0.58	34 14 AAV	0.622	-0.117
Trenton (Jan 98) LPD-14	< 1	17772	14376	6504	7641	3120	0	1348	13028	0.733	56555	38151	17331	55(16 22	541	0.67	11 ITCO	0.732	-0.058
Trenton (Jan 96) LPD-14	۲ I	17772	12656	6257	9364	2513	2498	1369	11287	0.739	56555	39442	0	674	127 18(66	0.65	n ILCU	0.539	-0.042
Ponce LPD-15	5 A	15824	12407	8572	4611	2518	220	1504	10903	0.699	48960	28262	6466	32	18 144	460 4	20 0.56	32 ILCU	0.538	-0.117
CLASS AVG LPD-4		15815	12326	7493	3669	3176	481	1495	10831	0.706	50530	32550	18345	248	88 22	551 13	00 0.66	11 ITCO		-0.045
Portland (Jan 98) LSD-37	A V	16733	9467	7103	2520	512	5600	1426	8041	0.722	2178	1096	•	3.	41 1:	230 3	50 . 0.59	99 1 LCU	0.780	-0.123
Portland (Jan 96) LSD-37	V V	16733	12751	11758	0	1268	0	1580	11171	0.668	2178	1250	236		0 4	566	0 0.57	11 LCU	0.783	-0.094
Pensacola LSD-38	V S	11242	10390	9543	0	186	0	3148	7242	0.644	4593	2541	1509		0 7:	521	75 0.56	3 JLCAC	0.863	-0.082
CLASS AVG LSD-34	ý	14903	10869	9468	840	920	- 1867	2051	8188	0.676	2983	1629	582	1	047 44	472 141.66	67 0.57	3 3 LCAC		-0.103
Whidbey Island LSD-41	<	18578	17545	8902	3570	5992	0	3103	14442	0.777	1213	5349	0	12/	95 43	142 3	00 0.83	10 AAV	0.904	0.055
Constock LSD-45	4	19067	13807	10821	0	3040	960	2956	10851	0.599	6727	1654	1250		0 223	328 36	68 0.54	11 3 LCAC	0.982	-0.059
Tortuga LSD-46	۲ ۲	19087	15842	14327	1662	694	3000	3941	11901	0.740	1219	5438	0	116	36 3(800	50 0.81	4 4 LCAC	0.643	0.075
Ashland ** LSD-48	<	19087	17731	17611	0	400	0	4197	13534	0.709	6727	4082	2		0	731	65 0.62	2 4 LCAC	0.300	-0.087
CLASS AVG LSD-41		18955	16231	12915	1308	2532	066	3549	12682	0.706	6727	4131	330	Ø	133 18(325 10	46 0.72	1 4 LCAC		0.021
Harpers Perry LSD-49	A	17105	14165	14165	0	1983	312	1970	12195	0.726	78728	38234	18404		0 136	330 90	39 0.54	9 2 LCAC	0.000	-0.178
Carter Hall ** LSD-50	< -	26917	C1691	16596	0 0	1716	5/96	1593	15382	0.728	80816	24651	23765		0 0	730 514	0.83	B ILCU	0.488	0.110
IC-OCT LANE 334 13		14400	16103	14405		3116	1000	0371	13613	0210	14034	10040	C1017			24 010			774-0	C/110-
CLASS AVE DATE		14072	COICT	C0HH1		. 6177 .	1764	6001	C7CC1	V./40	17601	AIDH?	17617			C17 762	49. 0.02	112 TLAL		071.0-
La Moure County LST-11	79 A	16609	9219	4198	0	5087	0	0	9219	0.555	4339	2242	1682		0 429	32	0 0.51	A N/A	0.987	+0.038
										377270							126959	1		
 detailed EPMRs for 7 ships 										541098							201573	≏ [
** Detailed Load Plans Provi	ded fo	4 Ships					0	verall		0.697					Overal	_	0.63	ទា		
							<	verage		0.705					Averag	e	0.64	1		-0.059
						Aver	age (7 ships	with detailed	EPMRs)	0.731				Average (7 shi	ps with del	ailed EPMR	(2) 0.62	199		-0.101
						Average	(4 ships with	Detailed Lo	d Plans)	0.729			Ave	rage (4 ships v	vith Detaile	ed Load Plar	is) 0.72	19		-0.003
					Average (11 shins wi	th detailed F	PMRs or Lo	d Plane)	0130		Aver	ane (11 chi	ne with detaile	d UPMR .	or Load Plan	el 0.66	15		0.060

Table D.6. Final Calculations

0.838 Carter 11ali ** 0.479 Saipan

HI

APPENDIX E. NET CAPACITIES OF SHIPS AND CLASS AVERAGES TABLE

				Net	Net	
Ship)		Troop Bunks	Vehicle	Cargo	
		Base	Surge	Total	(sqft)	(cuft)
LHD1	Wasp	1894	211	2105	19763	92767
LHD2	Essex	1631	182	1813	20603	92767
LHD3	Kearsarge	1894	213	2107	21546	106820
LHD4	Boxer	1688	184	1872	20603	92767
LHD5	Bataan	1737	184	1921	21297	93423
AVG		1769	195	1964	20763	95709
LHA1	Tarawa	1895	0	1895	23384	101649
LHA2	Saipan	1904	0	1904	27189	124627
LHA3	Belleau Wood	1904	0	1904	22144	74311
LHA4	Nassau	1903	0	1903	27189	133396
LHA5	Peleliu	1903	0	1903	23686	101649
AVG		1902	0	1902	24718	107126
LPD4	Austin	727	188	915	11884	34334
LPD5	Ogden	724	202	926	11560	32751
LPD6	Duluth	698	221	919	12812	37676
LPD7	Cleveland	659	179	838	11361	29821
LPD8	Dubuque	674	184	858	11190	36367
LPD9	Denver	673	178	851	13208	36387
LPD10	Juneau	682	178	860	11203	31221
LPD12	Shreveport	665	176	841	12956	30365
LPD13	Nashville	659	208	867	13105	30809
LPD14	Trenton	721	198	919	13930	36195
LPD15	Ponce	728	192	920	12567	31334
AVG		692	191	883	12343	33387
LSD49	Harpers Ferry	405	101	506	13944	50386
LSD50	Carter Hall	405	101	506	20812	51722
LSD51	Oak Hill	405	101	506	18280	43660
LSD52	Pearl Harbor	406	102	508	18770	43520
AVG		405	101	507	17951	47322
LSD41	Whidbey Island	399	100	499	16945	4305
LSD42	Germantown	403	101	504	17301	4305
LSD43	Fort McHenry	413	100	513	17301	4305
LSD44	Gunston Hall	404	101	505	17301	4305
LSD45	Comstock	402	102	504	17287	4305
LSD46	Tortuga	393	102	495	17301	4305
LSD47	Rushmore	403	101	504	17287	4305
LSD48	Ashland	408	101	509	17301	4305
AVG		403	101	504	17253	4305
LSD36	Anchorage	334	0	334	15353	1762
LSD39	Mount Vernon	299	58	357	14555	1303
AVG	LSD36M Class	317	29	346	14954	1532
LSD37	Portland	276	64	340	13683	1394
LSD38	Pensacola	303	20	323	9839	2940
AVG	LSD36 Class	290	42	322	11761	2167
I ST 1184	Frederick	314	72	386	12251	2788
LST 1104	La Moure County	315	68	383	11626	2700
AVG	Da moule Coulity	315	70	385	11020	2782
TOTALS		32 650	A 572	27 222	650 210	1 618 120
IUTALS		52,030	4,573	31,223	030,318	1,018,129

APPENDIX F. SAMPLE OF APPLICABLE SLCP PAGES

USS SHREVEPORT (LPD-12)

SECTION I

GENERAL

1. PRINCIPAL CHARACTERISTICS

.

Ship Type and Class	Amphibious Transport Dock LPD-4 (AUSTIN Class) Flag Configured	
Length (Overall)	`569'	
Beam	84'1"	
Draft, Maximum (Full Load)	21'6"	
Draft Ballasted	32'	
Displacement Tonnage (Full Load) S/T	16,912	
Freeboard to Main Deck	33' AFT, 41'11" FWD	
Freeboard to Flight Deck	33' 2.	

2. ORGANIC LANDING CRAFT, BOATS AND HELICOPTERS

		HELO				
TYPE	LCM-8	LCM-6	LCM-6 (HS)	UB	LCPL	
QTY	0	0	0	1	2	0

1.0.0

3. WELL DECK CAPACITY

LCM-6 Equivalents: <u>9</u>

LCM-8 Equivalents: 4

LCU Equivalents: 1

LCAC Equivalents: 1

4. STAFF, TROOP AND CREW LIVING ACCOMMODATIONS SUMMARY

	FLAG OFFICER	OFFICER	SNCO/CPO (E7-E9)	SSGT/PO1 (E6)*	ENL	TOT
NAVAL STAFF	1	30	4	0	54	89
LANDING FORCE (NORMAL)	0	79	26	0	560	665
LANDING FORCE (SURGE)	0	0	0	0	176	176
TOTAL	1	109	30	0	790	930
CREW	0	30	29	0	463	522

*No designated E-6 berthing. E-6 berthing included with E1/E5.

5. MEDICAL CAPACITIES

Operating Rooms: 1

Intensive Care Beds: 0

USS SHREVEPORT (LPD-12)

Isolation Rooms/Beds: 1/4

Recovery Wards/Beds: <u>1/8</u>

6. TROOP CARGO SPACE CAPACITIES

	SQUARE FEET	CUBIC FEET	FIGURES ACTUAL S	SHOWN ARE QFT AND CUFT
GENERAL CARGO	NOTE 1	NOTE 1	TOTALS. WAS MADE	NO REDUCTION FOR LFORM,
AMMUNITION	6,437**	41,394	MLA, AVC	AL, BOAT HAVEN,
PYROTECHNICS	151**	842	REQUIREM	ENTS, AND NO
DEMOLITIONS	64**	357	HAVE BEEL	N APPLIED.
JETTISONABLE LOCKERS	NOTE 2	42		
SPECIAL WEAPONS	740**	4810	55 GAL DRUM CAP	MAXIMUM USEABLE CAPACITY (GALS)
POL (PACKAGED)	***	***	***	
JP-5 (BULK) (AVIATION)	xxx	xxx	XXX	332,000
JP-5 (BULK) (GROUND)	XXX	xxx	XXX	NOTE 3
MOGAS (BULK)	XXX	XXX	XXX	23,000
DIESEL "DFM" (BULK)	xxx	xxx	xxx	NOTE 3 828,366
VEHICLES	16,380		VEHICLES	SQFT FIGURE IS
FLIGHT DECK	13,809**	XXX	TOTAL SQU AVAILABLI	JARE FOOTAGE E IN DESIGNATED
HANGAR DECK	3,543**	XXX	XXX VEHICLE STOWAGE AREA AND DOES NOT INCLUDE WELL DECK, FLIGHT DE AND HANGAR DECK.	
WELL DECK WITHOUT WATER BARRIER RAISED	8,036**	· xxx		
WELL DECK (AFT) WITH WATER BARRIER RAISED	N/A	XXX		
TOTALS	16,380	47,445		

.

NOTE 1 - AMMUNITION HOLDS HAVE OPERATIONAL USE AS CARGO STOWAGE SPACES.

- NOTE 2 THERE ARE 6 JETTISONABLE LOCKERS ON THE CATWALK ADJACENT TO THE FLIGHT DECK FOR THE STORAGE OF LITHIUM BATTERIES. COORDINATE WITH THE CCO IF USE OF THESE IS CONTEMPLATED.
- NOTE 3 ALL JP-5 IS FILTERED TWICE AND THEREFORE CLASSIFIED AS AVIATION QUALITY FUEL. DFM IS DISPENSED TO LANDING FORCE UNITS AS REQUIRED TO SUPPORT MISSION OBJECTIVES. TOTAL DFM LISTED IS THE TOTAL SHIPS CAPACITY.
 - * REFER TO SECTION VIII (TROOP CARGO SPACE CAPACITY BREAKDOWN) FOR DETAILED INFORMATION ON SPECIFIC SPACES.
 - ** NOT INCLUDED IN TOTALS.
 - *** SHARED STOWAGE WITH VEHICLES.

SECTION VIII

TROOP CARGO SPACE CAPACITY BREAKDOWN

,	ET (ES 8)													
	PALLE SQUAR (40X4		7	3		564		114	118	54	96	40		
	(DYG) DOL					*							•	-
SIC FEET	SPECIAL WEAPONS											4,810 **		
ACE - CUI	JETT LOCKER												42	
ARGO SI	DEMO			357										2 1
NATED C	PYRO		842											C 7 0
DESIG	AMMO							11,908	13,013	5,861	10,612			102 11
	GEN		*	*	*	*		*	*	*	*	*		
	VEHICLE SQUARE FEET	13,809****			7,343	9,037 ***	8,036****							000 21
	HOLD NUMBER	-1	л	r1	3	4	4	ß	5	9	6	9	VAR	
	DECK/ PLATFORM LEVEL	FLIGHT DECK	PYROTECHNICS LOCKER	DEMOLITIONS MAGAZINE	UPPER VEHICLE	LOWER VEHICLE	WELL DECK	1ST PLATFORM FORWARD	1ST PLATFORM AFT	2ND PLATFORM FORWARD	2ND PLATFORM AFT	SPECIAL WEAPONS	JETTISONABLE LOCKERS	D TAMOR

USS SHREVEPORT (LPD-12)

÷2.

VIII-1

TROOP CARGO SPACE CAPACITY BREAKDOWN

- General Cargo may be stowed in LFORM Magazine's depending on space available. General Cargo stowed in these magazines must be compatible with the LFORM. General Cargo may also be stowed in Upper Vehicle Stowage in lieu of vehicles. It is also acceptable to stow a mixture of vehicles and cargo in lower vehicle stowage.
- ** The special weapons magazine is designated for special situation. The ship's highly pilferrable LFORM items are stored in this area. Special permission must be granted from the Commanding Officer of the ship to use this space.
- *** Available space used for cargo/vehicles stowage plus LFORM.

**** Not included in totals.

NOTE 1 There are 6 jettisonable lockers on the catwalks adjacent to the flight deck for the storage of lithium batteries. Coordinate with the CCO, if use of these is contemplated.

APPENDIX G. SAMPLE GAMS CODE AND RESULTS

GAMS 2.25.092 DOS Extended/C 07/11/98 11:49:50 PAGE 1 AMPHIB WORST CASE LIFT OPTIMIZATION SCHEDULE 2 3 4 6 7 OPTIONS LIMCOL = 0, LIMROW = 0, SOLPRINT = OFF, DECIMALS = 2 8 RESLIM = 1000000, ITERLIM = 1000000, OPTCR = 0 , SEED = 3141; 9 10 OPTION MIP=XA; 11 *-----Original: 12/5/97 Author : LT Eric Williams Revised: 4/31/98 Description: Determine ARGs by Lift Capacity 21 *-----INDICIES------22 SETS 23 I type /bigDeck, LPD, LSD/ J ship /essex, boxer, peleliu, tarawa, cleveland, ogden, 24 juneau, denver, harpersFe, pearlHarb, comstock, 25 26 mountVern/ 27 Κ ARG /1*4/ 28 ; 29 *-----DATA-----30 TABLE 31 TROOP(J,I) troop base capacity for ship J of type I 32 bigDeck LPD LSD 33 essex 1631 boxer 1688 34 35 peleliu 1903 36 tarawa 1895 37 cleveland 659 38 oqden 724 39 juneau 682 40 denver 673 41 harpersFe 405 pearlHarb 42 406 43 402 comstock 44 mountVern 299 45 ; 46 TABLE 47 VEHICLE(J, I) net vehicle capacity for ship J of type I 48 bigDeck LPD LSD 49 20603 essex 50 boxer 20603 51 peleliu 23686 52 tarawa 23384 53 cleveland 11361 54 oqden 11560 55 juneau 11203 56 denver 13208 57 harpersFe 13944

GAMS Amphi	2.25.092 DOS Extended	1/C	SCHEDULE	07/11,	/98 11:49:5
			SCHEDOLL		
58	pearlHarb			18770)
59	comstock			1728	7
60	mountVern			1455:	D
61	;				
62	TABLE		and the fam	abia Tak	5 hanna 7
60 61	CARGO(0,1) Net	cargo car	Jacity Ior	snip J of	t type 1
65	ASSAY	92767	LED	130	
66	boxer	92767			
67	peleliu	101649			
68	tarawa	101649			
69	cleveland		29821		
70	ogden		32751		
71	juneau		31221		
72	denver		36387		
73	harpersFe			50386	5
74	pearlHarb			43520)
75	comstock			4305	5
76	mountVern			1303	3
77	;				
78	TABLE				
79	P(J,I,K)				
80		1	2	3	4
81	essex.bigDec}	c 2			
82	boxer.bigDec}	c	2		
83	peleliu.bigDe	eck		2	
84	tarawa.bigDec	ck			2
85	cleveland.LPI	D 1			
86	ogden.LPD		1		
87	Juneau.LPD			1	
88	denver.LPD	. 1			1
89	narpersre.LSI		1		
90	pear Harb.LSI)	T	1	
91	COMSLOCK.LSD	`		1	1
92)			1
93	*				
95	BINARY VARIABLES				
96	X(T,T,K) assign	ship i of	type i to	ARG k	
97					
98	VARIABLES				
99	Z objective	value			
100	WT worst case	ARG troc	p capacity	7	
101	WV worst case	e ARG vehi	cle capac:	ity	
102	WC worst case	ARG card	o capacity	-	
103	;				
104	*				
105	EQUATIONS				
106	OBJ maximi	ze worst	case capad	cities	
107	LIFTT(K) worst	case troo	op capacity	Y	
108	LIFTV(K) worst	case vehi	cle capac:	ity	
109	LIFTC(K) worst	case care	o capacity	Z	
110	MINS(J) each a	thin used	at most or	100	

50 PAGE 2

.

GAMS 2.25.092 DOS Extended/C 3 AMPHIB WORST CASE LIFT OPTIMIZATION SCHEDULE MINI(I,K) each ARG has only one ship of each type 111 112 ; *----OBJECTIVE FUNCTION--------113 114 OBJ.. 115 Z = E = WT + WV / (SUM(I, SUM(J, VEHICLE(J, I))) / SUM(I, SUM(J, TROOP(J, I)))) +116 WC/(SUM(I,SUM(J,CARGO(J,I)))/SUM(I,SUM(J,TROOP(J,I)))) +117 SUM(I, SUM(J, SUM(K, X(I, J, K) * P(J, I, K))))118 ; 119 *-----CONSTRAINTS------120 LIFTT(K).. 121 SUM(I,SUM(J,TROOP(J,I)*X(I,J,K))) = G = WT;122 123 LIFTV(K).. SUM(I,SUM(J,VEHICLE(J,I)*X(I,J,K))) =G= WV; 124 125 126 LIFTC(K).. 127 SUM(I,SUM(J,CARGO(J,I)*X(I,J,K))) = G = WC;128 129 MINS(J).. 130 SUM(I,SUM(K,X(I,J,K))) = L = 1;131 132 MINI(I,K).. 133 SUM(J,X(I,J,K)) = L = 1;134 135 MODEL AMPHIB /ALL/; 136 SOLVE AMPHIB USING MIP MAXIMIZING Z; 137 DISPLAY WT.L, WV.L, WC.L, X.L; COMPILATION TIME = 0.880 SECONDS VERID WAT-25-092 GAMS 2.25.092 DOS Extended/C 07/11/98 11:49:50 PAGE AMPHIB WORST CASE LIFT OPTIMIZATION SCHEDULE Model Statistics SOLVE AMPHIB USING MIP FROM LINE 136 MODEL STATISTICS BLOCKS OF EQUATIONS6SINGLE EQUATIONSBLOCKS OF VARIABLES5SINGLE VARIABLES 37 148 NON ZERO ELEMENTS 460 DISCRETE VARIABLES 144 GENERATION TIME = 3.840 SECONDS EXECUTION TIME = 3.910 SECONDS VERID WAT-25-092

GAMS 2.25.092DOS Extended/C07/11/9811:49:50PAGEAMPHIB WORST CASE LIFT OPTIMIZATION SCHEDULESolution ReportSOLVE AMPHIB USING MIP FROM LINE 136

SOLVE SUMMARY

MODEL AMPHIB OBJECTIVE Z TYPE MIP DIRECTION MAXIMIZE FROM LINE 136 SOLVER XA **** SOLVER STATUS 1 NORMAL COMPLETION 1 OPTIMAL **** MODEL STATUS **** OBJECTIVE VALUE 8004.7732 RESOURCE USAGE, LIMIT 1.350 1000000.000 ITERATION COUNT, LIMIT 2728 100000 * XA Professional Linear Programming System Copyright 1991,92,93,94,95,96 by Sunset Software Technology * All Rights Reserved Worldwide. * Phone 818-441-1565 FAX 818-441-1567 Tolerances (OPTCA) 0 (OPTCR) 0 **** REPORT SUMMARY : 0 NONOPT 0 INFEASIBLE 0 UNBOUNDED GAMS 2.25.092 DOS Extended/C 07/11/98 11:49:50 PAGE 6 AMPHIB WORST CASE LIFT OPTIMIZATION SCHEDULE Execution . 137 VARIABLE WT.L 2761.00 worst case ARG troop ----= capacity VARIABLE WV.L = 48991.00 worst case ARG vehicle capacity VARIABLE WC.L 133459.00 worst case ARG cargo = capacity ---- 137 VARIABLE X.L assign ship j of type i to ARG k 1 2 3 4 BIGDECK.ESSEX 1.00 BIGDECK, BOXER 1.00 BIGDECK, PELELIU 1.00 BIGDECK.TARAWA 1.00 LPD .CLEVELAND 1.00 . OGDEN LPD 1.00 1.00 LPD .JUNEAU

NVER		1.00		
RPERSFE			1.00	
ARLHARB	1.00			
MSTOCK		1.00		
JNTVERN				1.00
FIME =	0.160	SECONDS	VERID WAT-	-25-092
ations Researc	h		G971215:	1528AS-WAT
l Postgraduate	School			
SUMMARY				
A:\AMPH1.GMS				
A:\AMPH1.LST				
	NVER RPERSFE ARLHARB ISTOCK JNTVERN FIME = Ations Researc Postgraduate SUMMARY A:\AMPH1.GMS A:\AMPH1.LST	<pre>NVER RPERSFE ARLHARB 1.00 ISTOCK JNTVERN FIME = 0.160 Ations Research Postgraduate School SUMMARY A:\AMPH1.GMS A:\AMPH1.LST</pre>	<pre>NVER 1.00 RPERSFE ARLHARB 1.00 MSTOCK 1.00 JNTVERN FIME = 0.160 SECONDS Ations Research Postgraduate School SUMMARY A:\AMPH1.GMS A:\AMPH1.LST</pre>	<pre>NVER 1.00 RPERSFE 1.00 ARLHARB 1.00 MSTOCK 1.00 JNTVERN</pre> FIME = 0.160 SECONDS VERID WAT- ations Research G971215: I Postgraduate School SUMMARY A:\AMPH1.GMS A:\AMPH1.LST

LIST OF REFERENCES

Department of the Navy. "Integrated Amphibious Operations and USMC Air Support Requirements: Annex J. (U) Amphibious Ships" Secret. 15 January 1991.

Military Traffic Management Command Transportation Engineering Agency. MTMCTEA REFERENCE 97-700-2, *Logistics Handbook for Strategic Mobility Planning*, August 1997.

1

Office of the Joint Chiefs of Staff. Joint Pub 1-02, DOD Dictionary of Military and Associated Terms, 23 March 1994.

Office of the Joint Chiefs of Staff. Joint Pub 3-02.2, Joint Doctrine for Amphibious Embarkation, 16 April 1993.

United States Marine Corps. FMFRP 1-18, Amphibious Ships and Landing Craft Data Book. Headquarters United States Marine Corps. 6 August 1991.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center
2.	Dudley Knox Library
3.	Commander in Chief1 US Transportation Command ATTN: TCJ3/4 Scott AFB, IL 62225-7001
4.	Director
5.	Commandant of the Marine Corps
6.	Commandant of the Marine Corps
7.	Director Expeditionary Warfare Division
8.	Commander in Chief

9.	Commanding General
10.	Commander Amphibious Group 11 Unit 25093 FPO AP 96606-5601
11.	Commander Amphibious Group 21 Unit 60001 FPO AP 96601-6006
12.	Commander Amphibious Group 3
13.	Commander Naval Surface Forces US Atlantic Fleet (CODE N36)1 1430 Mitscher Avenue Norfolk VA 23551-2494
14.	Commander Naval Surface Forces U.S. Pacific Fleet (CODE N30M)1 Naval Amphibious Base Coronado San Diego, CA 92155-5035
15.	LT COL John R. Smith
16.	Earl Cruse
17.	Prof. Samuel Buttrey, CODE OR
18.	CDR Ronald Brown, CODE OR

19.	LT Eric D. Williams
	825 Casanova Av. #90
	Monterey, CA 93940

.

